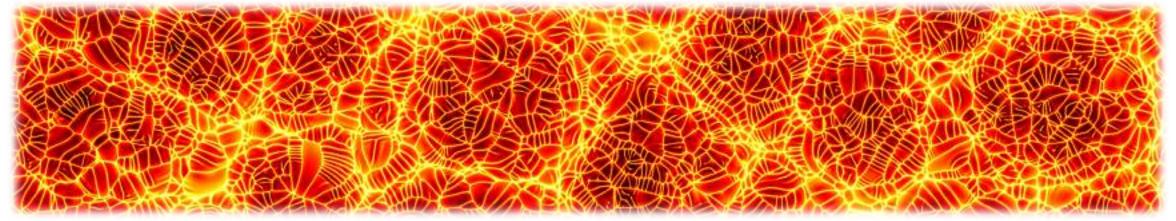
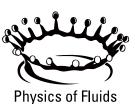
Computational Methods in Water Resources 2022

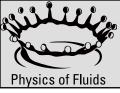
Three-dimensional Rayleigh-Darcy convection at high Rayleigh numbers



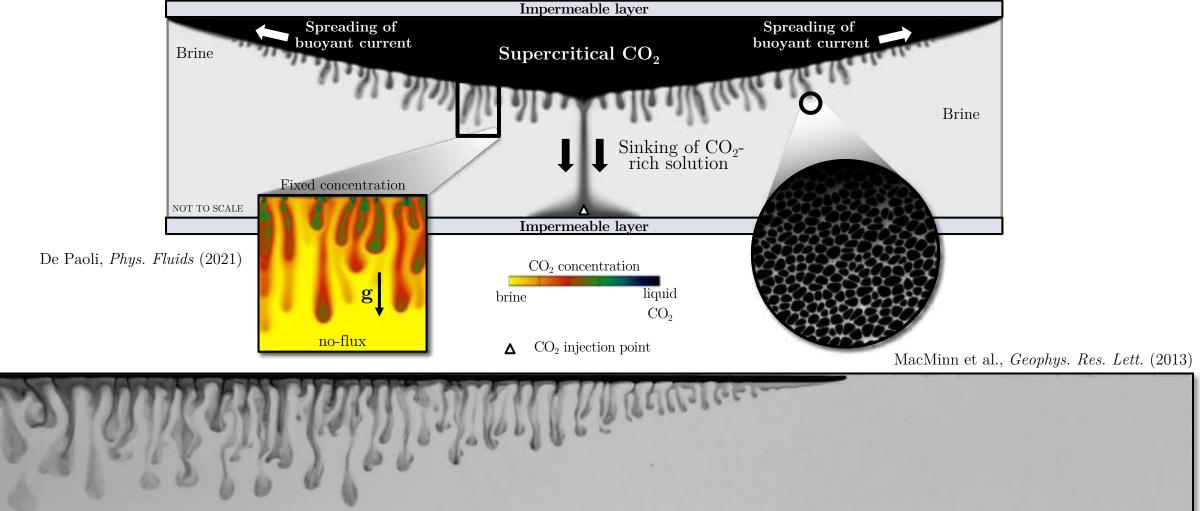


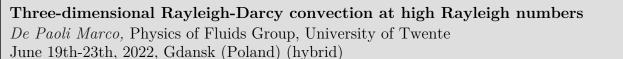
M. De Paoli^{1,2}, F. Zonta², S.Pirozzoli³ & A. Soldati^{2,4}

¹Physics of Fluids Group, University of Twente, Enschede (The Netherlands)
²Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna (Austria)
³Department of Aerospace and Mechanical Engineering, La Sapienza University, Rome, (Italy)
⁴Polytechnic Department, University of Udine, Udine (Italy)

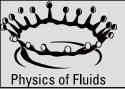


Carbon Capture and Storage

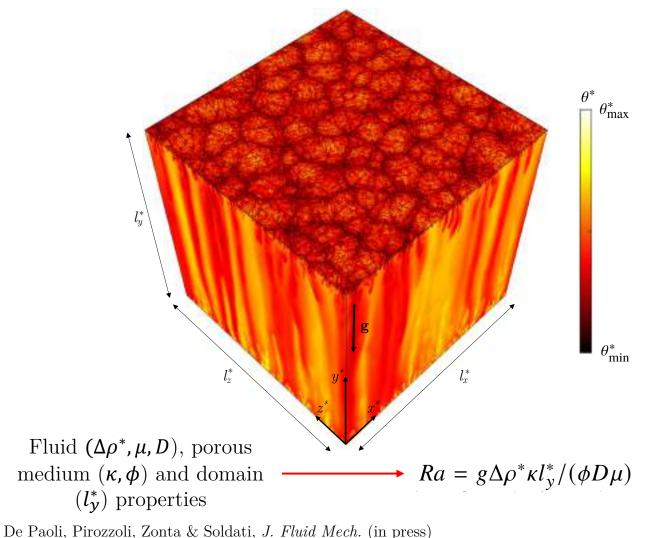




75x realtime



Methodology



Equations

$$\frac{\partial \theta}{\partial t} + \nabla \cdot \left(\mathbf{u}\theta - \frac{1}{\mathrm{Ra}} \nabla \theta \right) = 0,$$

$$\nabla \cdot \mathbf{u} = 0$$
 , $\mathbf{u} = -(\nabla p - \theta \mathbf{j})$,

Boundary conditions

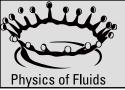
$$v(y = 0) = 0$$
 , $\theta(y = 0) = 1$,
 $v(y = 1) = 0$, $\theta(y = 1) = 0$.

Simulations performed

Simulation	Ra	$l_x/l_y \times l_z/l_y$	$N_x \times N_z \times N_y$
Ra_1	1.0×10^3	4 × 4	$384 \times 384 \times 32$
Ra_2 Ra_5	2.5×10^3 5.0×10^3	4×4 4×4	$768 \times 768 \times 64$ $1536 \times 1536 \times 128$
Ra_7 Ra_{10}	7.5×10^3 1×10^4	4×4 1×1	$2304 \times 2304 \times 192$ $768 \times 768 \times 256$
Ra_{20}	2×10^4 3×10^4	1 × 1	$1536 \times 1536 \times 512$ $2304 \times 2304 \times 768$
Ra_{40} Ra_{80}	4×10^4 8×10^4	1 × 1 1 × 1	$3072 \times 3072 \times 1024$ $6144 \times 6144 \times 2048$
Ra_{10} Ra_{20} Ra_{30} Ra_{40}	1×10^4 2×10^4 3×10^4 4×10^4	1 × 1 1 × 1 1 × 1 1 × 1	$768 \times 768 \times 256$ $1536 \times 1536 \times 512$ $2304 \times 2304 \times 768$ $3072 \times 3072 \times 1024$

De Paoli Marco, Physics of Fluids Group, University of Twente June 19th-23th, 2022, Gdansk (Poland) (hybrid)

Pirozzoli, De Paoli, Zonta & Soldati, J. Fluid Mech. (2021)



Numerical details

- <u>Spatial discretization</u>: Second-order finite-difference incompressible flow solver (staggered arrangement of the flow variables, Orlandi, *Fluid Flow Phenomena*, 2000)
- <u>Time discretization</u>: the temperature transport equation is advanced in time by means of a hybrid third-order low-storage Runge–Kutta algorithm, whereby the convective terms are handled explicitly and the diffusive terms are handled implicitly, limited to the wall-normal direction.
- Pure MPI parallelization: Cineca Supercomputing centre, Infrastructure Marconi,

$$32,000 \text{ cores}$$
 $\approx 3\text{TB/field}$

De Paoli, Pirozzoli, Zonta & Soldati, J. Fluid Mech. (in press) Pirozzoli, De Paoli, Zonta & Soldati, J. Fluid Mech. (2021)

Equations

$$\frac{\partial \theta}{\partial t} + \nabla \cdot \left(\mathbf{u}\theta - \frac{1}{\mathrm{Ra}} \nabla \theta \right) = 0,$$

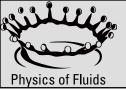
$$\nabla \cdot \mathbf{u} = 0 \quad , \quad \mathbf{u} = - \left(\nabla p - \theta \mathbf{j} \right),$$

Boundary conditions

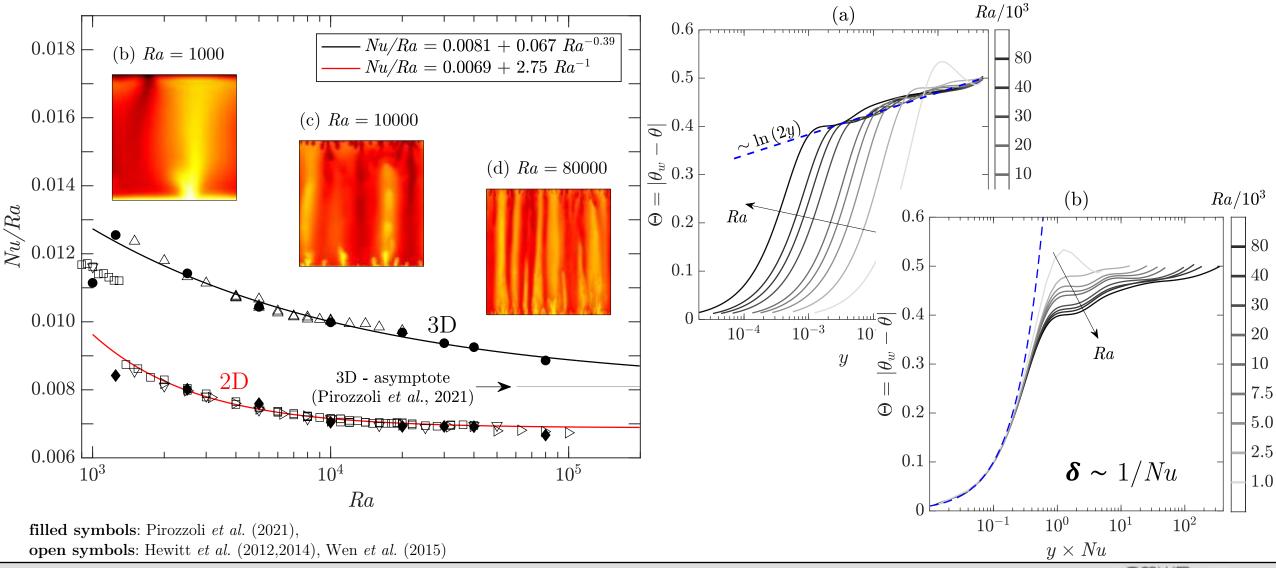
$$v(y = 0) = 0$$
 , $\theta(y = 0) = 1$,
 $v(y = 1) = 0$, $\theta(y = 1) = 0$.

Simulations performed

Simulation	Ra	$l_x/l_y \times l_z/l_y$	$N_x \times N_z \times N_y$
Ra_1	1.0×10^{3}	4×4	$384 \times 384 \times 32$
Ra_2	2.5×10^{3}	4×4	$768 \times 768 \times 64$
Ra_5	5.0×10^{3}	4×4	$1536 \times 1536 \times 128$
Ra_7	7.5×10^{3}	4×4	$2304 \times 2304 \times 192$
Ra_{10}	1×10^{4}	1×1	$768 \times 768 \times 256$
Ra_{20}	2×10^{4}	1×1	$1536 \times 1536 \times 512$
Ra_{30}	3×10^{4}	1×1	$2304 \times 2304 \times 768$
Ra_{40}	4×10^{4}	1×1	$3072 \times 3072 \times 1024$
Ra_{80}	8×10^{4}	1×1	$6144 \times 6144 \times 2048$

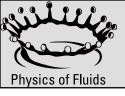


Temperature and heat transfer statistics



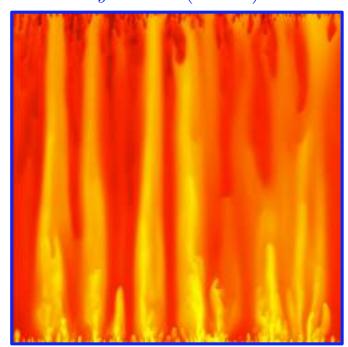
Three-dimensional Rayleigh-Darcy convection at high Rayleigh numbers

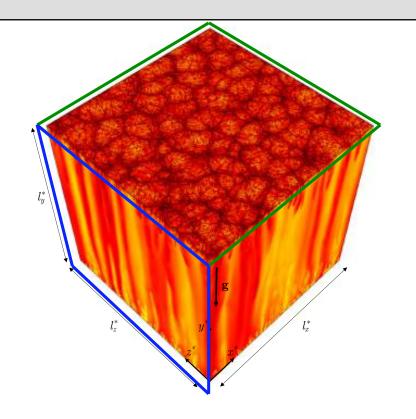
De Paoli Marco, Physics of Fluids Group, University of Twente June 19th-23th, 2022, Gdansk (Poland) (hybrid)



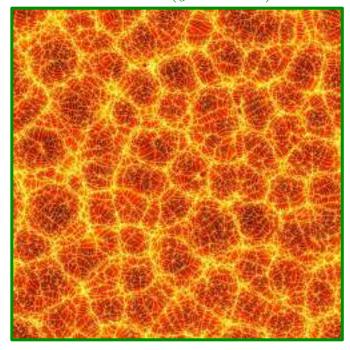
Flow structure at high-Ra (Ra = 8×10^4)

y-z slice (x = 0)

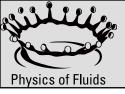




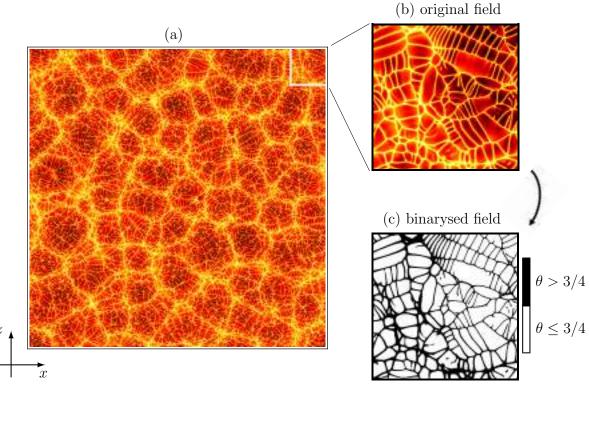
x-z slice (y = 0.01)



Pirozzoli, De Paoli, Zonta & Soldati, J. Fluid Mech (2021)



Characterization of near-wall cell pattern

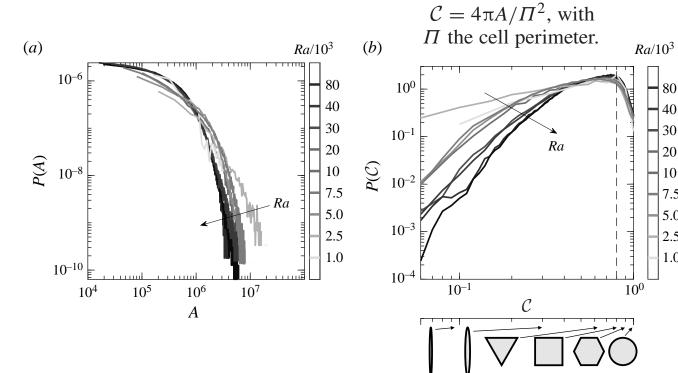


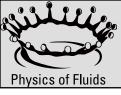
Near-wall temperature field binarization

De Paoli, Pirozzoli, Zonta & Soldati, J. Fluid Mech. (in press)

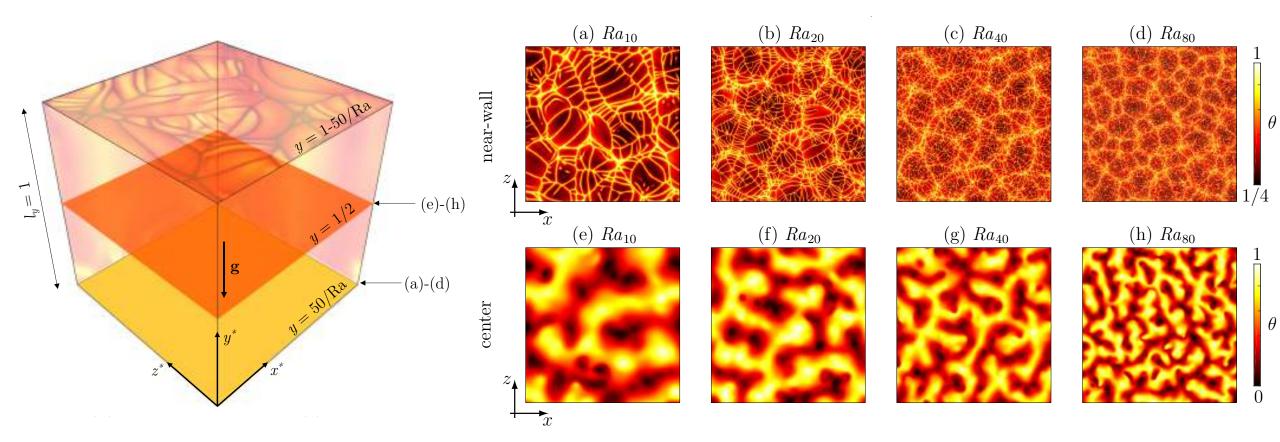
Characterization of cell pattern:

- Identification of cells area, A
- Identification of cells shape (circularity, C)

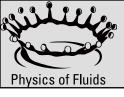




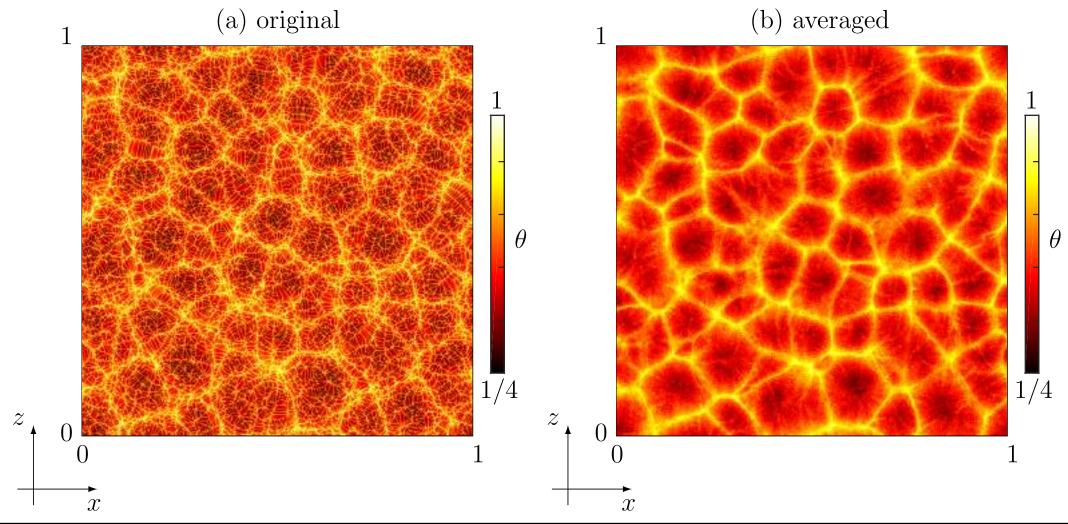
Near-wall and core flow

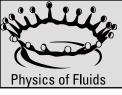


Are supercells correlated to megaplumes?



Near-wall flow structures and supercells





Near-wall and core flow

Mean radial wave number

$$\overline{k}_r(y) = \left\langle \frac{\int \int \sqrt{k_x^2 + k_z^2} E(k_x, k_z) \, dx dz}{\int \int E(k_x, k_z) \, dx dz} \right\rangle$$

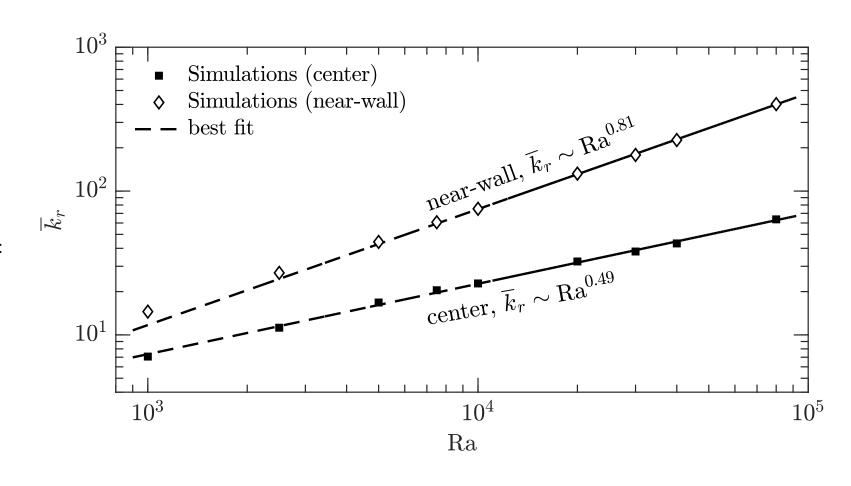
Theoretical prediction (Hewitt et al., 2014):

$$center$$

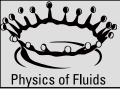
$$\overline{k}_r \sim Ra^{1/2}$$

near-wall

$$\overline{k}_r \sim \delta \sim 1/Nu$$



CMWF



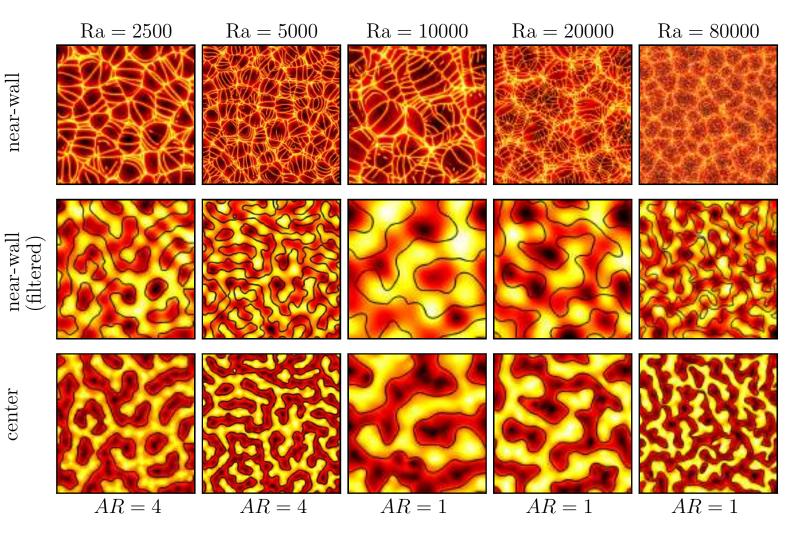
Supercells and megaplumes

Mean radial wave number

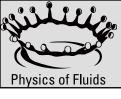
$$\overline{k}_r(y) = \left\langle \frac{\int \int \sqrt{k_x^2 + k_z^2} E(k_x, k_z) \, dx dz}{\int \int E(k_x, k_z) \, dx dz} \right\rangle$$

Following Berghout *et al.* (2021), we filter out the small-scale structures

Supercells are the footprint of megaplumes



CMWR



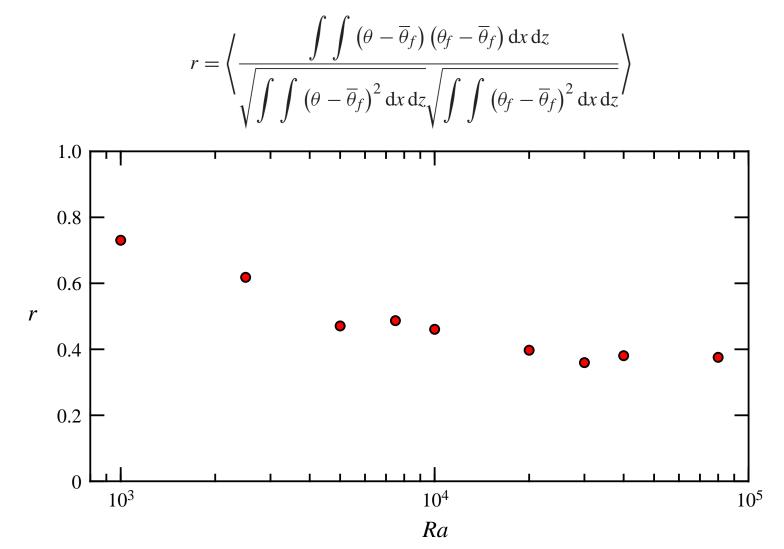
Supercells and megaplumes

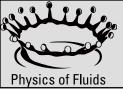
Mean radial wave number

$$\overline{k}_r(y) = \left\langle \frac{\int \int \sqrt{k_x^2 + k_z^2} E(k_x, k_z) \, dx dz}{\int \int E(k_x, k_z) \, dx dz} \right\rangle$$

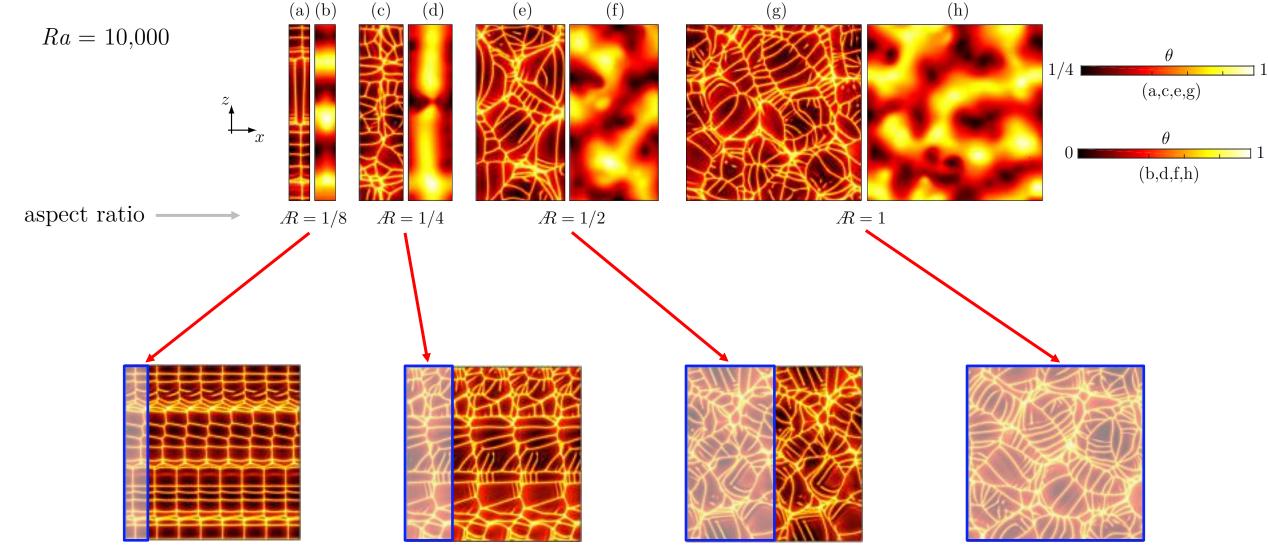
Following Berghout *et al.* (2021), we filter out the small-scale structures

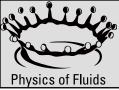
Supercells are the footprint of megaplumes



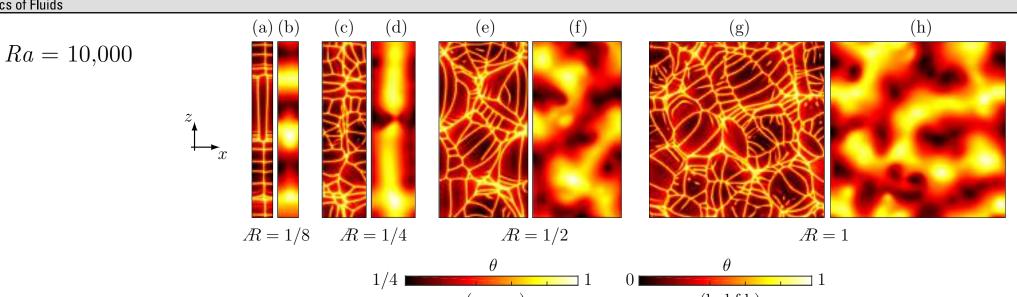


Assessment of domain size effects

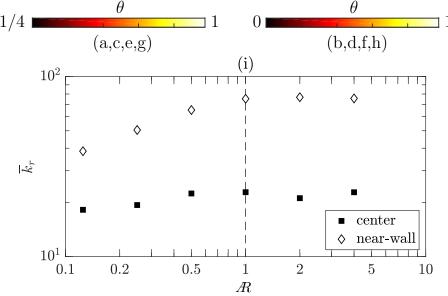


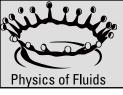


Assessment of domain size effects

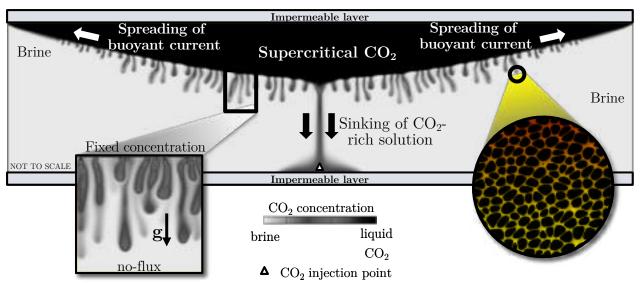


Also at large Ra [$O(10^3)$], a minimum aspect ratio of 1 is required to accurately describe the large-scale flow structures

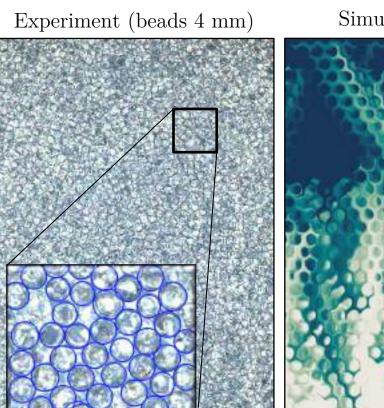




Future developments – pore-scale dynamics



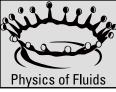
Numerical and experimental investigation of pore-scale dispersion effects on convective dissolution



Simulations (IBM)

Chris Howland, *Physics of Fluids Group*, University of Twente

15

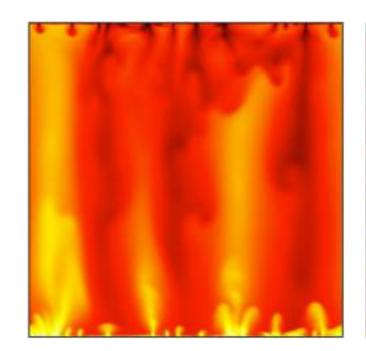


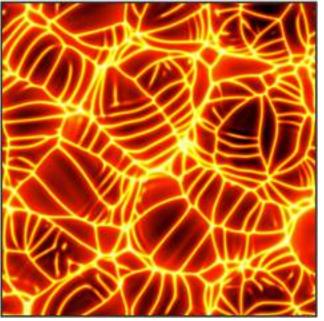
Thank you for your attention! Questions?

This research was funded in part by the Austrian Science Fund (FWF) [Grant J-4612]

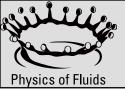
Der Wissenschaftsfonds.

HPC resources provided by PRACE [Grant Pra21-5415]





Physics Today **74**, 5, 68 (2021)



Additional numerical details

$\underline{Additional\ details\ on\ spatial\ discretization}$

- Wall-normal direction: hyperbolic tangent stretching function
 - Approximately 20 points within the thermal boundary layer
- Horizontal directions: uniform spacing
- Fourier expansion along the horizontal periodic directions yields a system of tridiagonal equations in the wall-normal direction for each Fourier mode, which is then solved with standard highly efficient numerical techniques

Equations

$$\frac{\partial \theta}{\partial t} + \nabla \cdot \left(\mathbf{u}\theta - \frac{1}{\mathrm{Ra}} \nabla \theta \right) = 0,$$

$$\nabla \cdot \mathbf{u} = 0$$
 , $\mathbf{u} = -(\nabla p - \theta \mathbf{j})$,

Boundary conditions

$$v(y = 0) = 0$$
 , $\theta(y = 0) = 1$, $v(y = 1) = 0$, $\theta(y = 1) = 0$.

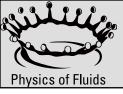
The pressure field is determined by solving the Poisson equation resulting from the divergence-free constraint:

$$\nabla^2 p = \frac{\partial \theta}{\partial y}$$

$$\partial p/\partial y = 0$$
 at walls (no-penetration)

De Paoli, Pirozzoli, Zonta & Soldati, J. Fluid Mech. (in press) Pirozzoli, De Paoli, Zonta & Soldati, J. Fluid Mech. (2021)

17



High-resolution images, movies and slides are available upon request to m.depaoli@utwente.nl

