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2
Institute of Fluid Mechanics and Heat Transfer, TU Wien, 1060 Vienna, Austria

3
Polytechnic Department, University of Udine, 33100 Udine, Italy

(Dated: March 12, 2025)

M. De Paoli1,2, Guru Sreevanshu Yerragolam1, Detlef Lohse1 & Roberto Verzicco1,3,4

1Physics of Fluids Group, University of Twente, Enschede (The Netherlands)
2Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna (Austria)

3Dipartimento di Ingegneria Industriale, University of Rome “Tor Vergata”, Rome (Italy)
4Gran Sasso Science Institute, L’Aquila, (Italy)

https://marcodepaoli.com Computer Physics Communications Seminar Series

AFiD-Darcy: A finite difference solver for numerical 
simulations of convective porous media flows

De Paoli, M., Yerragolam, G. S., Lohse, D., & Verzicco, R. (2025). Computer Physics Communications, 109579. https://doi.org/10.1016/j.cpc.2025.109579 

https://marcodepaoli.com/
https://doi.org/10.1016/j.cpc.2025.109579


De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows 2

Acknowledgements

This project has received 
funding from the 

European Union's 
Horizon Europe research 

and innovation 
programme under the 

Marie Sklodowska-Curie 
grant agreement MEDIA 

No. 101062123.

D. Lohse R. VerziccoG. S. Yerragolam

We acknowledge the EuroHPC Joint Undertaking for awarding 
the project EHPC-REG-2023R03-178 to access the EuroHPC 

supercomputer Discoverer hosted by Sofia Tech Park 
(Bulgaria), and the project EHPC-BEN-2024B08-060 to access 

the EuroHPC supercomputer MareNostrum5 hosted the 
Barcelona Supercomputing Center (Spain).



De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows 3

Seminar outline

1. Motivation & background
2. Methodology
3. Verification
4. Future developments
5. Conclusions



De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows 4

1) Motivation 
& background
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A) Convection in porous media

Middleton, C. A., C. Thomas, A. de Wit, And 
J.-L. Tison. “Visualizing Brine Channel 
Development and Convective Processes during 
Artificial Sea-Ice Growth Using Schlieren Optical 
Methods.” Journal of Glaciology 62, no. 231 
(2016): 1–17. https://doi.org/10.1017/jog.2015.1.

imposed experimental conditions, the timing of each stage of
the experiment, and the format of the results obtained.

An example image obtained using the traditional Schlieren
method is shown in Figure 5; a non-processed Schlieren image
(Fig. 5a) is shown with the equivalent processed image
(Fig. 5b) for comparison. The original cell temperature was
set to −1 °C and cooling initiated from the top of the cell at
a temperature of −20 °C. The top of the cell is ∼1 cm above
the observed field of view (FOV). In the original image,
brine rejection features are visible sinking from the ice layer.
By processing the image, these features become more
obvious and further details become evident, such as their in-
ternal structure. Particularly apparent is the difference in the
right-hand side of the FOV, where features that are not
clearly visible in the unprocessed image due to uneven light-
ing become visible in the processed image. Figure 6 andVideo
1 (supplementary material) show the evolution of the
dynamics as imaged with the traditional Schlieren technique.

With the addition of an extra light source, as detailed in
Section 2.3 (the adapted Schlieren technique), even more
details become apparent. As seen in Figure 7 and Video 2

Fig. 5. Traditional Schlieren images of brine rejection from a
growing ice layer. (a) Unprocessed image, ice is the dark area at
the top of the image. Brine rejection is visible due to areas of
differing luminosity, which outlines thin streamers sinking from the
ice/water interface into the underlying water layer. (b) Processed
image, normalized to a reference image (taken before cooling
began) and enhanced in post-processing. More details of the
streamers are visible. FOV is 9.5 cm × 12.5 cm.

Fig. 6. Time series of processed traditional Schlieren images during cooling and ice growth. The starting temperature of the cell was−1 °C, the
temperature imposed at the top of the cell was −20 °C. Ice is visible as the dark area at top of image, which increases in thickness over time.
Brine rejection features are visible under the ice layer, with short fingers (a) joined by longer streamers over time. The average distance
between the streamers increases with time. Multiple generations of streamers are visible in (e) and (f), with more dissipated streamers (i.e.
wider and less luminosity difference) followed by tighter streamers with higher luminosity differences. Highlighted features in (b–d) show
mushroom shaped heads of the streamers, as well as merging and tip splitting events. The images are normalized by subtracting a
reference image and the contrast enhanced in post-processing. FOV is 9.5 cm × 12.5 cm.

6 Middleton and others: Visualizing convective processes during artificial sea-ice growth
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Sea ice formation
Craig T. Simmons, Thomas R. 
Fenstemaker, John M. Sharp, 
Variable-density groundwater flow 
and solute transport in 
heterogeneous porous media: 
approaches, resolutions and future 
challenges, Journal of Contaminant 
Hydrology, 2001, 
https://doi.org/10.1016/S0169-
7722(01)00160-7

De Paoli, M. Convective mixing in 
porous media: a review of Darcy, 
pore-scale and Hele-Shaw studies. 
Eur. Phys. J. E 46, 129 (2023). 
https://doi.org/10.1140/epje/s1018
9-023-00390-8

Wells AJ, Hitchen JR, Parkinson JRG. 2019 Mushy-
layer growth and convection, with application to sea 
ice. Phil. Trans. R. Soc. A 377: 20180165.
http://dx.doi.org/10.1098/rsta.2018.0165

Other applications
11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A377:20180165
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Figure 4. Two snapshots of simulated mushy-layer growth for an NaCl–H2O solution in a thin, quasi-two-dimensional Hele-
Shaw cell cooled from above with an isothermal impermeable upper boundary, laterally periodic boundary conditions and an
open basal boundary condition at z = H. See movie in the electronic supplementary material for the transient evolution. The
white–blue colour scale shows porosityχ in themushy layer, whilst the blue–yellow colour scale shows dimensionless salinity
Sl = (S − S∞)/(SE − S∞) in the liquid. Red contours are logarithmically spaced isotherms θ = log10(1 + j)/log10(11) for
j = 0, 1, . . . , 10, where the dimensionless temperature θ = (T − T∞)/(TE − TL(S∞)). The simulation parameter values
are C = 0.18, Rm = 320, Le= 100 and S = 5 with surface temperature T0 = TE, h= H used in the Rayleigh number,
and dimensionless permeability Π = χ 3 applied throughout the Hele-Shaw cell. The numerical computations employ the
enthalpy method described in [56] but implemented using a finite volume scheme adapted from [57] applied on a uniform
computational grid of 10242 cells. Second-order differencing is used in space, with advection treated explicitly via a conservative
Godunov method and implicit time stepping of diffusive terms. A pressure-projection method is used to maintain divergence-
free velocities, and multigrid iteration used for the implicit solves (see [57] for further description of these numerical schemes).
(a) At time t = 0.19H2/κ convective saline plumes sink from the mushy region via a nearly periodic array of approximately
vertical brine channels dissolved in the mushy layer, with the corresponding heat and solute transport significantly deforming
the mush–liquid interface. (b) At the later time t = 1.33H2/κ , the mushy layer has grown thicker and the pattern of
actively convecting brine channels coarsens with an increase in their mean spacing. Remnant inactive brine channels leave
a high-porosity residual in the mushy layer.

Some features observed in mushy-layer experiments remain to be theoretically reconciled.
Observed oscillatory modes of convection [22,24] are qualitatively consistent with linear stability
analyses, and have been compared to weakly nonlinear analysis in [38]. However, the conditions
for their occurrence and their impact on solute fluxes have yet to be reconciled in models
with finite-amplitude flow through brine channels. Channels can also show significant side
branching [27–29]. It is not clear whether such side branching can be explained by continuum
models of mushy layers, or might be inherited from the pore-scale microstructure.

(d) Outstanding challenges from geophysical observations of convection from sea ice and
biogeochemical transport

Observations of growing sea ice and its impact on the polar oceans also raise new questions. Of
key interest to oceanographers is the impact of brine rejection on upper ocean mixing. Salt fluxes
below sea ice have been estimated from ocean turbulence arrays mounted on thick ice (discussed
in [58]), but it remains challenging to capture ocean fluxes during the early stages of ice growth.
The net impact on water mass transformation is inferred from oceanographic measurements and
reanalyses (e.g. [59,60]). Some recent observations indicate salt fluxes following warming of the
ice in spring [61–63]. Scaling arguments and a one-dimensional parametrization of salt transfer
suggest that such desalination could be caused by full-depth convection during ice warming,
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https://www.youtube.com/watch?v=RZwjnRfImbo&t=58s&ab_channel=YOUTUBEPEDIA

https://www.youtube.com/watch?v=RZwjnRfImbo&t=58s&ab_channel=YOUTUBEPEDIA
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B) Carbon Capture and Storage (CCS)

CCS can work as unique climate 
change mitigation technology for 

at least 100 years 

M.L. Szulczewski, C.W. MacMinn, H.J. Herzog, & R. 
Juanes, Lifetime of carbon capture and storage as a 
climate-change mitigation technology, Proc. Natl. Acad. 
Sci. U.S.A. 109 (14) 5185-5189, 
https://doi.org/10.1073/pnas.1115347109 (2012)

Injection point
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B) Carbon Capture and Storage

MacMinn, C. W., and R. Juanes (2013), Buoyant 
currents arrested by convective dissolution, Geophys. 

Res. Lett., 40, 2017–2022, doi:10.1002/grl.50473.

Impermeable layer
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M. De Paoli; Influence of reservoir properties on 
the dynamics of a migrating current of carbon 
dioxide. Physics of Fluids 1 January 2021; 33 (1): 
016602. https://doi.org/10.1063/5.0031632
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B) Carbon Capture and Storage

M. De Paoli; Influence of reservoir 
properties on the dynamics of a migrating 
current of carbon dioxide. Physics of Fluids
1 January 2021; 33 (1): 016602. 
https://doi.org/10.1063/5.0031632

Focus on the Darcy scale: 

• Flow equation valid for a 
Reference Elementary 
Volume (REV)

• Size of flow structures > 
size of the pores

• Importance of dissipative 
mechanisms dominate over 
driving mechanisms 
quantified by Rayleigh-
Darcy number, Ra

Spreading of 
buoyant current

Darcy scale

pore scale
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C) Key research question

How are heat and mass transported 
in buoyancy-driven porous media 

flows? 
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How are heat and mass transported 
in buoyancy-driven porous media 
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D) State of the art: examples
Heterogeneous media
 - Cusini, M., van Kruijsdijk, C., & Hajibeygi, H. (2016). Algebraic 
dynamic multilevel (ADM) method for fully implicit simulations of 
multiphase flow in porous media. Journal of Computational 
Physics, 314, 60-79. http://dx.doi.org/10.1016/j.jcp.2016.03.007
 - Wang, Y., Vuik, C., & Hajibeygi, H. (2022). Analysis of 
hydrodynamic trapping interactions during full-cycle injection and 
migration of CO2 in deep saline aquifers. Advances in Water 
Resources, 159, 104073.
https://doi.org/10.1016/j.advwatres.2021.104073

76 M. Cusini et al. / Journal of Computational Physics 314 (2016) 60–79

Fig. 23. Test Case 4: Pressure and water saturation at 200 days after injection. The ADM method uses constant (b) and bilinear (c) interpolation for pressure 
and constant interpolation for saturation. The threshold value for the coarsening criterion is 0.2, corresponding to about 40% of fine-scale grid cells.

Fig. 24. Test Case 4: history of the number of active nodes employed by ADM during simulation. The threshold value for the coarsening criterion is 0.2. 
Also, average ADM active grid cells are mentioned in the graph.

Fig. 25. Test Case 4: (a) count of ADM non-linear iterations with different threshold values. Also shown in solid black line is the one for the reference 
solution. Note that the same nonlinear convergence threshold values are used for both ADM and fine-scale systems, while they converge on different grid 
resolutions. (b) ADM active cells as a function of the coarsening threshold value.

Water Resources Research

the flux in the diffusion-dominated regime is lower for the reactive cases corresponding to the mechanisms 
discussed. Figure 8b depicts the carbon dissolution flux from the aquifer rock for different simulation cases. 
At early times the dissolution flux is controlled by diffusion of CO2 from the boundary into the domain. 
As the diffusion starts the water acidity increases and the generated protons in the aquifer are consumed 
by calcite and dolomite dissolution (hence the effect of geochemical interactions in this regime is not sig-
nificant). After the convection onset, the dissolution rate considerably increases which enhances the total 
flux ( ) and mixing in the aquifer as well. After this period, the CO2 and rock dissolution flux balance and 
rock dissolution rates show a constant rate regime. Afterward, the domain starts saturating with CO2 which 
decreases the rock dissolution as well as the total flux significantly (i.e., shutdown regime).

Figure 9 shows the mineralogy change distribution for the simulation case of  = 6,000 at tD = 10−3 which 
correspond to ≈100 years for a domain of 100 m. The results obtained are in line with the results presented 
by Sainz-Garcia et al. (2017). As the results show calcite and dolomite dissolution and gypsum precipitation 

ERFANI ET AL.

10.1029/2020WR027829

17 of 26

Figure 8. Time behavior of (a) total carbon storage flux ( ) for reactive and nonreactive cases and (b) carbon 
dissolution flux from the aquifer rock for different -numbers (  = 750, 1,500, 6,000, and 12,000, corresponding to 
different domain permeabilities).

R =12000

R =6000

R =750

R =1500

Figure 9. Distribution of change in (a) calcite, (b) dolomite, and (c) gypsum content for the simulation case with  = 6,000 at tD = 10−3 (corresponding 
to ≈100 years for a domain of 100 m). The changes in mineral content are illustrated in (log mol  ). Notably, calcite and dolomite minerals dissolve from the 
aquifer rock into the aqueous phase, while gypsum precipitates due to CO2 storage in the aquifer.
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What is missing: highly parallel open-source 
code for buoyancy-driven wall-bounded flows

Geochemistry
 - H. Erfani, M. Babaei, V. Niasar, Dynamics of CO2 density-driven 
flow in carbonate aquifers: effects of dispersion and geochemistry, 
Water Resour. Res. 57 (4) (2021) e2020WR027829. 
https://doi.org/10.1029/2020WR027829
 - T. Koch, D. Gläser, K. Weishaupt, S. Ackermann, M. Beck, B. 
Becker, S. Burbulla, H. Class, E. Coltman, S. Emmert, et al., Dumux 
3–an open-source simulator for solving flow and transport problems in 
porous media with a focus on model coupling, Comput. Math. Appl. 81 
(2021) 423–443. https://doi.org/10.1016/j.camwa.2020.02.012 

http://dx.doi.org/10.1016/j.jcp.2016.03.007
https://doi.org/10.1029/2020WR027829
https://doi.org/10.1016/j.camwa.2020.02.012
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D) State of the art

AFiD – Advanced Finite Difference 
solver for wall-bounded flows

E.P. Van Der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent 
wall-bounded flows. Comput. Fluids, 116 (2015), pp. 10-16. https://doi.org/10.1016/j.compfluid.2015.04.007
Yang, Rui, Christopher J. Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. “Morphology Evolution of a Melting Solid 
Layer above Its Melt Heated from Below.” Journal of Fluid Mechanics 956 (2023): A23. https://doi.org/10.1017/jfm.2023.15.

Cartesian Cylindrical
Fluid and flow models

Phase-change, surface 
tension, particles 

transport,…

In this manuscript, we will detail the parallelization of a sec-
ond-order FDS based on Verzicco and Orlandi [12] to two wall
bounded systems, Rayleigh–Bénard (RB) convection, the flow in a
fluid layer between two parallel plates; one heated from below
and cooled from above and Taylor–Couette (TC) flow, the flow
between two coaxial independently rotating cylinders, although
our code can easily extended to any flow that is wall-bounded in
one dimension. This FDS scheme has already been used in pure
Navier–Stokes simulations [12], with immersed boundary methods
[13], for Rayleigh–Bénard convection [14–20] and for Taylor–
Couette flow [21,22]. The numerical results have been validated
against experimental data numerous times. We will exploit several
advantages of the large Re regime and the boundary conditions to
heavily reduce communication cost; opening the possibility to
achieve much higher driving.

The manuscript is organized as follows: Section 2 describes TC
and RB in more detail. Section 3 details the numerical scheme used
to advance the equations in time. Section 4 shows that in thermal
convection, the Courant–Friedrichs–Lewy (CFL) [23] stability con-
straints on the timestep due to the viscous terms become less strict
than those due to the non-linear terms at high Rayleigh (Reynolds)
numbers. Section 5 details a pencil decomposition to take advan-
tage of the new time integration scheme and the choice of data
arrangement in the pencil decomposition. Finally, Section 6 com-
pares the computational cost of the existing and the new approach
and presents an outlook of what further work can be done to com-
bine this approach with other techniques.

2. Rayleigh–Bénard convection and Taylor–Couette flow

RB and TC are paradigmatic models for convective and shear
flows, respectively. They are very popular systems because they
are mathematically well defined, experimentally accessible and
reproduce many of the interesting phenomena observed in appli-
cations. A volume rendering of the systems can be seen in Fig. 1.
The Reynolds numbers in the common astro- and geo-physical
applications are much higher than what can be reached currently
in a laboratory. Therefore it is necessary to extrapolate available
experimental results to the large driving present in stars and galax-
ies. This extrapolation becomes meaningless when transitions in
scaling behaviour are present, and it is expected that once the
Rayleigh number, i.e. the non-dimensional temperature difference,
becomes large enough, the boundary layers transition to

turbulence. This transition would most likely affect the scaling of
interesting quantities. However, experiments disagree on exactly
where this transition takes place [24,25]. DNS can be used to
understand the discrepancies amongst experiments. However, to
reach the high Rayleigh numbers (Ra) of experiments new strate-
gies are required. DNS must resolve all scales in the flow, and the
scale separation between the smallest scale and the largest scale
grows with Reynolds number. This means larger grids are needed,
and the amount of computational work W scales approximately as
W ! Re4 [26].

Simulations of RB commonly imitate the cylindrical geometry
most used in experiments. Recently, a DNS with aspect ratio
C ¼ D=L ¼ 1=3, where D is the diameter of the plates and L the
height of the cell reached Ra ¼ 1012 using 1.6 Billion points with
a total cost of 2 Million CPU hours [27]. DNS in other geometries
have been proposed, such as homogeneous RB, where the flow is
fully periodic and a background temperature gradient is imposed.
This geometry is easy to simulate [28], but presents exponentially
growing solutions and does not have a boundary layer, thus not
showing any transition [29]. Axially homogeneous RB, where the
two plates of the cylinder are removed, and the sidewalls kept
and a background temperature gradient is imposed to drive the
flow has also been simulated [30]. This system does not have
boundary layers on the plates and does not show the transition.
Therefore, it seems necessary to keep both horizontal plates, hav-
ing at least one wall-bounded direction. The simplest geometry is
a parallelepiped box, periodic in both wall-parallel directions,
which we will call ‘‘rectangular’’ RB for simplicity. Rectangular
RB is receiving more attention recently [31–34], due to possibility
to reach higher Ra as compared to more complex geometries. It is
additionally the geometry that is closest to natural applications,
where there are commonly no sidewalls.

For TC, we have one naturally periodic dimension, the azi-
muthal extent. The axial extent can be chosen to be either bounded
by end-plates, like in experiments, or to be periodic. Axial end-
plates have been shown to cause undesired transitions to turbu-
lence if TC is in the linearly stable regime [35], or to not consider-
ably affect the flow if TC is in the unstable regime [36]. Large Re
DNS of TC focus on axially periodic TC, bounding the flow only in
the radial direction [37,22]. Therefore, the choice of having a single
wall-bounded direction for DNS of both TC and RB seems justified.

3. Numerical scheme

The code solves the Navier–Stokes equations with an additional
equation for temperature in three-dimensional coordinates, either
Cartesian or cylindrical. For brevity, we will focus on the RB
Cartesian problem, although all concepts can be directly translated
to TC in cylindrical coordinates system by substituting the vertical
direction for the radial direction, and the two horizontal directions
by the axial and azimuthal directions.

The non-dimensional Navier–Stokes equations with the
Boussinesq approximation for RB read:

r # u ¼ 0; ð1Þ

@u
@t
þ u #ru ¼ 'rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ hex; ð2Þ

@h
@t
þ u #rh ¼

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
r2h; ð3Þ

where u is the non-dimensional velocity, p the non-dimensional
pressure, h the non-dimensional temperature and t the non-dimen-
sional time. For non-dimensionalization, the temperature scale is
the temperature difference between both plates D, the length scale

Fig. 1. Left: RB flow for Ra ¼ 108; Pr ¼ 1 and C ¼ 2 in Cartesian coordinates. The
horizontal directions are periodic and the plates are subjected to a no-slip and
isothermal boundary condition. Red/yellow indicates hot fluid, while (light) blue
indicates cold fluid. The small heat carrying structures known as thermal plumes as
well as a large scale circulation can be seen in the visualization, highlighting the
scale separation in the flow. Right: TC flow with an inner cylinder Reynolds number
Re ¼ 105, a stationary outer cylinder, and a radius ratio g ¼ ri=ro ¼ 0:714. Green
fluid has a high angular velocity while blue fluid has a low angular velocity. The
smallness of the structures responsible for torque transport, and thus the need for
fine meshes, can be appreciated clearly. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

E.P. van der Poel et al. / Computers & Fluids 116 (2015) 10–16 11

Geometry Language & 
libraries

FORTRAN 90
FFTW3
HDF5

Parallelization

MPI
OpenMP
CUDA

https://doi.org/10.1016/j.compfluid.2015.04.007
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2) Methodology
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A) Flow configuration

Equations obtained scaling 
the flow variables with respect 
to convective scales

M. De Paoli, G.S. Yerragolam, D. Lohse et al. 

Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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B) Governing equations

M. De Paoli, G.S. Yerragolam, D. Lohse et al. 

Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)

Variables arrangement on the grid
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)
Spacing Uniform in periodic direction, non-uniform or 

uniform in vertical direction
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)
Spacing Uniform in periodic direction, non-uniform or 

uniform in vertical direction
Parallelization MPI, 2D pencil-like domain decomposition

physical upper bound of Nu ! Ra1=2 [43], indicating that for the
mild assumptions made, the criteria c 6 1=2 is always satisfied.
This signifies that the scaling of Dtu"ru is more restrictive than
Dtmr2u, which results in that using only the non-linear CFL con-
straint in the time-marching algorithm, inherently satisfies the sta-
bility constraints imposed by the explicit integration of the
horizontal components of the viscous terms. Including the vertical
non-uniform grid in this derivation makes this statement even
more valid, as the used CFL time step is based on this grid (Eq.
(9)). Inherent to the big-O-notation is the absorption of the coeffi-
cients and offsets. This makes this derivation only valid for high Ra
flows. For low Ra, the solver will be unstable the viscous constraint
is not satisfied in this regime.

In addition, we note that the previous analysis can be applied
for the scalar (temperature) equation as long as Pr ! Oð1Þ.
If Pr % 1, which is the case in some applications, the CFL con-
straint on the horizontal conductive terms becomes Dtjr2T !

O Pr
1
2Ra

1
2ðDyÞ2

! "
, which means a stricter restriction on the time-

step than Eq. (13). This means that the Ra of the flow required to
make Dtu"ru 6 Dtjr2T will be higher.

5. Code parallelization

In the previous section, we reasoned that for large Ra the impli-
cit integration of the viscous terms in the horizontal direction
becomes unnecessary. The calculation becomes local in space as
the two horizontal directions no longer require implicit solvers
to calculate the intermediate velocity field u&. In this case it is
worth decomposing the domain such that the pencils are aligned
in the wall-normal (x) direction, i.e. that every processor possesses
data from x1 to xN (cf. Fig. 4). Halo updates must still be performed
during the computation of u&, but this memory distribution com-
pletely eliminates all the all-to-all communications associated to
the viscous implicit solvers, as for every pair ðy; zÞ, a single proces-
sor has the full x information, and is able to solve the implicit equa-
tion in x for the pair ðy; zÞ without further communication.

All-to-all communications are unavoidable during the pressure
correction step, as a Poisson equation must be solved. As the two
wall-parallel directions are homogeneous and periodic, it is natural
to solve the Poisson equation using a Fourier decomposition in two
dimensions. Fourier transforming variables / and the right side in
Eq. (5) reduces the pressure correction equation to:

@2

@x2 'x2
y;j 'x2

z;k

 !
F ð/Þ ¼ F 1

alDt
ðDu&Þ

# $
ð15Þ

where F ð"Þ denotes the 2D Fourier transform operator, and xy;j and
xz;k denote the j-th and k-th modified wavenumbers in y and z
direction respectively, defined as:

xy;j ¼
1' cos 2pðj'1Þ

Ny

h i! "
D'2

y : for j 6 1
2 Ny þ 1

1' cos 2pðNy'jþ1ÞÞ
Ny

h i! "
D'2

y : otherwise

8
><

>:

and xz;k is defined in an analogous way. A modified wavenumber is
used, instead of the real wavenumber, to prevent that the Laplacian
has higher accuracy in some dimensions. In the limit Dy! 0, the
modified wavenumbers converge to the real wavenumbers.

By using a second order approximation for @2
x , the left hand side

of the equation is reduced to a tridiagonal matrix, and thus the
Poisson equation is reduced to a 2D FFT followed by a tridiagonal
(Thomas) solver. This allows for the exact solution of the Poisson
equation in a single iteration with OðNxNyNz log½Ny+ log½Nz+Þ time
complexity. Due to the domain decomposition, several data trans-
poses must be performed during the computation of the equation.
The algorithm for solving the Poisson equation is as follows:

1. Calculate ðDu&Þ=ðalDtÞ from the x-decomposed velocities.
2. Transpose the result of (1) from a x-decomposition to a

y-decomposition.
3. Perform a real-to-complex Fourier transform on (2) in the y

direction.
4. Transpose (3) from a y-decomposition to z-decomposition.
5. Perform a complex-to-complex Fourier transform on (4) in

the z direction.
6. Transpose (5) from a z-decomposition to a x-decomposition.
7. Solve the linear system of Eq. (15) with a tridiagonal solver

in the x-direction.
8. Transpose the result of (7) from a x-decomposition to a

z-decomposition.
9. Perform a complex-to-complex inverse Fourier transform on

(8) in z direction.
10. Transpose (9) from a z-decomposition to a y-decomposition.
11. Perform a complex-to-real inverse Fourier transform on (10)

in a y direction.
12. Transpose (11) from a y-decomposition to a

x-decomposition.

The last step outputs / in real space, decomposed in x-oriented
pencils, ready for applying in Eqs. (7) and (8). Once the Poisson
equation is solved, the corrected velocities and pressures are com-
puted using Eqs. (7) and (8). The temperature and other scalars are
advected and the time sub-step is completed. The algorithm out-
lined above only transposes one 3D array, instead of three velocity
fields, making it very efficient. Fig. 4 shows a schematic of the data
arrangement and the transposes needed to implement the algo-
rithm. We wish to highlight that this algorithm also uses all possi-
ble combinations of data transposes. It can be seen from Fig. 4 that
the x to z transposes and the z to x transposes need a more complex
structure, as a process may need to transfer data to other processes
which are not immediate neighbours. The non-overlapping of data
before and after transposes is most striking for e.g. process 10 in
Fig. 4 with no overlap at all between x and z oriented pencils.
These transposes are absent in the 2DECOMP library on which
we build. These transposes have been implemented using the
more flexible all-to-all calls of the type ALLTOALLW, instead of

Fig. 4. Domain decomposition of a 16, 12, 10 grid using 12 distributed memory processes on a 4, 3 process grid. Only data that is exclusive to one process is shown; i.e. a
1 gridpoint-sized halo is transparent in this figure. The pencils are (a) x, (b) y or (c) z oriented.
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)
Spacing Uniform in periodic direction, non-uniform or 

uniform in vertical direction
Parallelization MPI, 2D pencil-like domain decomposition
Time advancement 3rd-order Runge–Kutta (RK3) + 

Crank-Nicolson
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3. Numerical scheme

The code solves the Darcy equation (9) with an advection-dispersion 
equation (ADE) for the transport of the scalar quantity (7) in case of 
incompressible flow, such that continuity (8) applies. A similar approach 
has been adopted by Pirozzoli et al. [16] and De Paoli et al. [48], who 
simulated flows in isotropic and homogeneous porous media, and later 
by Hu et al. [27], who employed an analogue scheme for convective 
flows with double diffusion. In this work, we propose an alternative 
formulation for the pressure correction term, and we also provide a fully 
implicit solution of the diffusive term of the ADE equation.

The code is designed for 3D wall-bounded flows in rectangular do-
mains. The set of Eqs. (7)-(9) is solved with the aid of a modified ver-
sion of the solver presented by van der Poel et al. [35] and originally 
developed to simulate convective Rayleigh-Bénard or Taylor-Couette 
flows. The domain is periodic along the horizontal directions (𝑦,𝑧), and 
wall-bounded in the vertical direction (𝑥). The spatial discretization em-
ployed consists of a conservative second-order centered finite-difference 
with velocities on a staggered grid, as illustrated in Fig. 2. The pressure 
and scalar fields are computed at the center of the cell, while the velocity 
fields are defined on the center of the faces. Thanks to this staggered ar-
rangement of the variables, the scheme is energy conserving in the limit 
of time step Δ𝑡→ 0, as also demonstrated by [34] for second-order fi-
nite differences. A remarkable advantage of the finite-difference scheme 
employed is represented by the ability to better handle sharp scalar gra-
dients compared to higher-order schemes [34,49,30,50]. In turbulent 
flows, the absence of the pressure term in the advection/diffusion scalar 
transport equation often leads to large scalar gradients. This situation 
is even more pronounced in convective Darcy flows, and it is present 
in all directions: strong gradients of scalar are observed at the tips of 
the growing fingers in unsteady configurations [51–53] or at the sides 
of the plumes in steady configurations [16]. In the following, the time-
marching scheme and the parallelization strategy are discussed.

3.1. Time marching

The time marching is performed on the ADE equation (7) with a 
fractional-step third-order Runge–Kutta (RK3) scheme, in combination 
with a Crank–Nicholson scheme [33] for the implicit terms. RK3 is 
self-starting at each time step without decreasing the accuracy and not 
requiring additional information in the restart file. This is key for the 
large simulations at which we aim at, which may require tens of restarts 
to get to the desired simulation time. For instance, the size of one restart 
file for simulation RT4 discussed in Sec. 4.3 is of 2 TB. Storing one ad-
ditional snapshot would require increasing considerably the disk space 
allocated, and notably also the amount of memory and communications. 
The RK3 algorithm is stable for Courant-Friedrichs-Lewy (CFL) numbers 
lower than 

√
3. Normally 1-1.3 is used as maximum CFL allowed, and 

the time-step Δ𝑡 is adapted correspondingly.

Substeps As previously mentioned, the ADE equation (7) is advanced in 
time and the Darcy equation (9) is subsequently used to determine the 
flow field. The substeps 1 and 2 slightly differ in case of fully-implicit 
or semi-implicit formulations, as discussed below. The main steps of the 
algorithm follow:

1. The explicit terms of Eq. (7) are computed at the substep 𝑗:

𝐻𝑗 = −(𝐮𝑗𝐶𝑗 ) + (𝐵𝑦 +𝐵𝑧)𝐶𝑗 , (11)
where  is the discrete divergence operator and 𝐵𝑖 is the discrete 
second derivative in the 𝑖-th direction. Note that in the fully im-
plicit formulation the terms 𝐵𝑦,𝐵𝑧 are not included here, but are 
accounted in substep 2.

2. The scalar field is advanced within the substep:
𝐶𝑗+1 −𝐶𝑗

Δ𝑡 = 𝛾𝑙𝐻𝑗 + 𝜌𝑙𝐻𝑗−1 + 𝛼𝑙𝐵𝑥
(
𝐶𝑗 +𝐶𝑗+1

2 

)
. (12)

As previously mentioned, in the fully implicit formulation, the 
terms 𝐵𝑦,𝐵𝑧 are also included. The parameters 𝛾𝑙 ,𝜌𝑙 and 𝛼𝑙 are the 
coefficients associated with the time integration scheme employed. 
The scalar field at the next substep, 𝐶𝑗+1, is then determined.

3. A preliminary non-solenoidal velocity field is computed as

𝐮∗ = −𝑝𝑗 −𝐶𝑗+1𝐢, (13)
subject to no-penetration boundary conditions (4) at the walls with  denoting the discrete gradient operator.

4. A pressure correction field 𝜓 is determined solving the Poisson 
equation

𝜓 =𝐮∗. (14)
5. The updated velocity and pressure fields are determined as

𝐮𝑗+1 = 𝐮∗ − 𝜓 (15)
𝑝𝑗+1 = 𝑝𝑗 +𝜓 (16)
such that the updated velocity field 𝐮𝑗+1 is solenoidal by construc-
tion.

We choose to develop two solvers for the treatment of the diffusive 
term of the ADE (7), namely a fully implicit and a partially implicit (la-
beled in the following also as semi-implicit), motivated by the variety 
of flow conditions that may be encountered when studied convection in 
porous media. Indeed, also at large Rayleigh-Darcy numbers, when the 
problem is transient and the system saturates in solute, the driving force 
may reduce considerably pointing to the need of an implicit solver. The 
exact fully implicit formulation requires the solution of a large sparse 
system, correspondingly increasing the computational cost. To over-
come this issue, an approximate factorization is employed to reduce the 
sparse matrix to a factorization of tridiagonal matrices [36] (one in each 
implicit direction). The corresponding linear systems are then solved 
using a Thomas’ algorithm, with a Sherman-Morrison perturbation in 
the periodic direction [35]. This approximation will introduce an error 
𝑂(Δ𝑡3) and will have a cost 𝑂(𝑁), with 𝑁 the number of grid points in 
one direction. We wish to highlight again that the implicit/semi-implicit 
solution is only relative to the diffusive terms of the scalar field. We refer 
to [54] for an example in which all terms are treated implicitly.

3.2. Parallelization

We summarize here the parallelization strategy. We use a two-
dimensional pencil decomposition, implemented via the 2DECOMP li-
brary [55], raising the maximum number of processes from 𝑁 to 𝑁2

and correspondingly decreasing the wall-clock time per timestep when 
compared to slab decomposition strategy. However, it also comes along 
with limitation of producing larger overhead costs of halo communica-
tion when a large number of cores is employed. Further details of the 
parallelization strategy consisting of three main parts are explained be-
low.

1. Determination of preliminary velocity field: 𝑢∗ is computed from 
Eq. (13), with a difference between the implicit and the semi-
implicit case. In both cases, the domain is initially decomposed in 
pencils that are aligned in the wall-normal direction 𝑥, such that 
every process has access to all data along the 𝑥 direction, for the 
𝑦,𝑧 pairs (and the relative halos) within the pencil considered. In 
the semi-implicit case, 𝑢∗ can be obtained for each stencil in par-
allel, completely eliminating the all-to-all communications. In the 
fully-implicit case, integration of the diffusive terms in horizontal 
direction is required, and all-to-all communications in the form of 
pencil transforms from pencils aligned in the 𝑥 direction to 𝑦 and 
𝑧 directions are necessary. Despite the increase of communication 
time, the fully-implicit strategy can still be considerably advanta-
geous in reducing the time-to-solution, as the time step may be 
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3. Numerical scheme

The code solves the Darcy equation (9) with an advection-dispersion 
equation (ADE) for the transport of the scalar quantity (7) in case of 
incompressible flow, such that continuity (8) applies. A similar approach 
has been adopted by Pirozzoli et al. [16] and De Paoli et al. [48], who 
simulated flows in isotropic and homogeneous porous media, and later 
by Hu et al. [27], who employed an analogue scheme for convective 
flows with double diffusion. In this work, we propose an alternative 
formulation for the pressure correction term, and we also provide a fully 
implicit solution of the diffusive term of the ADE equation.

The code is designed for 3D wall-bounded flows in rectangular do-
mains. The set of Eqs. (7)-(9) is solved with the aid of a modified ver-
sion of the solver presented by van der Poel et al. [35] and originally 
developed to simulate convective Rayleigh-Bénard or Taylor-Couette 
flows. The domain is periodic along the horizontal directions (𝑦,𝑧), and 
wall-bounded in the vertical direction (𝑥). The spatial discretization em-
ployed consists of a conservative second-order centered finite-difference 
with velocities on a staggered grid, as illustrated in Fig. 2. The pressure 
and scalar fields are computed at the center of the cell, while the velocity 
fields are defined on the center of the faces. Thanks to this staggered ar-
rangement of the variables, the scheme is energy conserving in the limit 
of time step Δ𝑡→ 0, as also demonstrated by [34] for second-order fi-
nite differences. A remarkable advantage of the finite-difference scheme 
employed is represented by the ability to better handle sharp scalar gra-
dients compared to higher-order schemes [34,49,30,50]. In turbulent 
flows, the absence of the pressure term in the advection/diffusion scalar 
transport equation often leads to large scalar gradients. This situation 
is even more pronounced in convective Darcy flows, and it is present 
in all directions: strong gradients of scalar are observed at the tips of 
the growing fingers in unsteady configurations [51–53] or at the sides 
of the plumes in steady configurations [16]. In the following, the time-
marching scheme and the parallelization strategy are discussed.

3.1. Time marching

The time marching is performed on the ADE equation (7) with a 
fractional-step third-order Runge–Kutta (RK3) scheme, in combination 
with a Crank–Nicholson scheme [33] for the implicit terms. RK3 is 
self-starting at each time step without decreasing the accuracy and not 
requiring additional information in the restart file. This is key for the 
large simulations at which we aim at, which may require tens of restarts 
to get to the desired simulation time. For instance, the size of one restart 
file for simulation RT4 discussed in Sec. 4.3 is of 2 TB. Storing one ad-
ditional snapshot would require increasing considerably the disk space 
allocated, and notably also the amount of memory and communications. 
The RK3 algorithm is stable for Courant-Friedrichs-Lewy (CFL) numbers 
lower than 

√
3. Normally 1-1.3 is used as maximum CFL allowed, and 

the time-step Δ𝑡 is adapted correspondingly.

Substeps As previously mentioned, the ADE equation (7) is advanced in 
time and the Darcy equation (9) is subsequently used to determine the 
flow field. The substeps 1 and 2 slightly differ in case of fully-implicit 
or semi-implicit formulations, as discussed below. The main steps of the 
algorithm follow:

1. The explicit terms of Eq. (7) are computed at the substep 𝑗:

𝐻𝑗 = −(𝐮𝑗𝐶𝑗 ) + (𝐵𝑦 +𝐵𝑧)𝐶𝑗 , (11)
where  is the discrete divergence operator and 𝐵𝑖 is the discrete 
second derivative in the 𝑖-th direction. Note that in the fully im-
plicit formulation the terms 𝐵𝑦,𝐵𝑧 are not included here, but are 
accounted in substep 2.

2. The scalar field is advanced within the substep:
𝐶𝑗+1 −𝐶𝑗

Δ𝑡 = 𝛾𝑙𝐻𝑗 + 𝜌𝑙𝐻𝑗−1 + 𝛼𝑙𝐵𝑥
(
𝐶𝑗 +𝐶𝑗+1

2 

)
. (12)

As previously mentioned, in the fully implicit formulation, the 
terms 𝐵𝑦,𝐵𝑧 are also included. The parameters 𝛾𝑙 ,𝜌𝑙 and 𝛼𝑙 are the 
coefficients associated with the time integration scheme employed. 
The scalar field at the next substep, 𝐶𝑗+1, is then determined.

3. A preliminary non-solenoidal velocity field is computed as

𝐮∗ = −𝑝𝑗 −𝐶𝑗+1𝐢, (13)
subject to no-penetration boundary conditions (4) at the walls with  denoting the discrete gradient operator.

4. A pressure correction field 𝜓 is determined solving the Poisson 
equation

𝜓 =𝐮∗. (14)
5. The updated velocity and pressure fields are determined as

𝐮𝑗+1 = 𝐮∗ − 𝜓 (15)
𝑝𝑗+1 = 𝑝𝑗 +𝜓 (16)
such that the updated velocity field 𝐮𝑗+1 is solenoidal by construc-
tion.

We choose to develop two solvers for the treatment of the diffusive 
term of the ADE (7), namely a fully implicit and a partially implicit (la-
beled in the following also as semi-implicit), motivated by the variety 
of flow conditions that may be encountered when studied convection in 
porous media. Indeed, also at large Rayleigh-Darcy numbers, when the 
problem is transient and the system saturates in solute, the driving force 
may reduce considerably pointing to the need of an implicit solver. The 
exact fully implicit formulation requires the solution of a large sparse 
system, correspondingly increasing the computational cost. To over-
come this issue, an approximate factorization is employed to reduce the 
sparse matrix to a factorization of tridiagonal matrices [36] (one in each 
implicit direction). The corresponding linear systems are then solved 
using a Thomas’ algorithm, with a Sherman-Morrison perturbation in 
the periodic direction [35]. This approximation will introduce an error 
𝑂(Δ𝑡3) and will have a cost 𝑂(𝑁), with 𝑁 the number of grid points in 
one direction. We wish to highlight again that the implicit/semi-implicit 
solution is only relative to the diffusive terms of the scalar field. We refer 
to [54] for an example in which all terms are treated implicitly.

3.2. Parallelization

We summarize here the parallelization strategy. We use a two-
dimensional pencil decomposition, implemented via the 2DECOMP li-
brary [55], raising the maximum number of processes from 𝑁 to 𝑁2

and correspondingly decreasing the wall-clock time per timestep when 
compared to slab decomposition strategy. However, it also comes along 
with limitation of producing larger overhead costs of halo communica-
tion when a large number of cores is employed. Further details of the 
parallelization strategy consisting of three main parts are explained be-
low.

1. Determination of preliminary velocity field: 𝑢∗ is computed from 
Eq. (13), with a difference between the implicit and the semi-
implicit case. In both cases, the domain is initially decomposed in 
pencils that are aligned in the wall-normal direction 𝑥, such that 
every process has access to all data along the 𝑥 direction, for the 
𝑦,𝑧 pairs (and the relative halos) within the pencil considered. In 
the semi-implicit case, 𝑢∗ can be obtained for each stencil in par-
allel, completely eliminating the all-to-all communications. In the 
fully-implicit case, integration of the diffusive terms in horizontal 
direction is required, and all-to-all communications in the form of 
pencil transforms from pencils aligned in the 𝑥 direction to 𝑦 and 
𝑧 directions are necessary. Despite the increase of communication 
time, the fully-implicit strategy can still be considerably advanta-
geous in reducing the time-to-solution, as the time step may be 

&RPSXWHU�3K\VLFV�&RPPXQLFDWLRQV�������������������

��

M. De Paoli, G.S. Yerragolam, D. Lohse et al. 

3. Numerical scheme

The code solves the Darcy equation (9) with an advection-dispersion 
equation (ADE) for the transport of the scalar quantity (7) in case of 
incompressible flow, such that continuity (8) applies. A similar approach 
has been adopted by Pirozzoli et al. [16] and De Paoli et al. [48], who 
simulated flows in isotropic and homogeneous porous media, and later 
by Hu et al. [27], who employed an analogue scheme for convective 
flows with double diffusion. In this work, we propose an alternative 
formulation for the pressure correction term, and we also provide a fully 
implicit solution of the diffusive term of the ADE equation.

The code is designed for 3D wall-bounded flows in rectangular do-
mains. The set of Eqs. (7)-(9) is solved with the aid of a modified ver-
sion of the solver presented by van der Poel et al. [35] and originally 
developed to simulate convective Rayleigh-Bénard or Taylor-Couette 
flows. The domain is periodic along the horizontal directions (𝑦,𝑧), and 
wall-bounded in the vertical direction (𝑥). The spatial discretization em-
ployed consists of a conservative second-order centered finite-difference 
with velocities on a staggered grid, as illustrated in Fig. 2. The pressure 
and scalar fields are computed at the center of the cell, while the velocity 
fields are defined on the center of the faces. Thanks to this staggered ar-
rangement of the variables, the scheme is energy conserving in the limit 
of time step Δ𝑡→ 0, as also demonstrated by [34] for second-order fi-
nite differences. A remarkable advantage of the finite-difference scheme 
employed is represented by the ability to better handle sharp scalar gra-
dients compared to higher-order schemes [34,49,30,50]. In turbulent 
flows, the absence of the pressure term in the advection/diffusion scalar 
transport equation often leads to large scalar gradients. This situation 
is even more pronounced in convective Darcy flows, and it is present 
in all directions: strong gradients of scalar are observed at the tips of 
the growing fingers in unsteady configurations [51–53] or at the sides 
of the plumes in steady configurations [16]. In the following, the time-
marching scheme and the parallelization strategy are discussed.

3.1. Time marching

The time marching is performed on the ADE equation (7) with a 
fractional-step third-order Runge–Kutta (RK3) scheme, in combination 
with a Crank–Nicholson scheme [33] for the implicit terms. RK3 is 
self-starting at each time step without decreasing the accuracy and not 
requiring additional information in the restart file. This is key for the 
large simulations at which we aim at, which may require tens of restarts 
to get to the desired simulation time. For instance, the size of one restart 
file for simulation RT4 discussed in Sec. 4.3 is of 2 TB. Storing one ad-
ditional snapshot would require increasing considerably the disk space 
allocated, and notably also the amount of memory and communications. 
The RK3 algorithm is stable for Courant-Friedrichs-Lewy (CFL) numbers 
lower than 

√
3. Normally 1-1.3 is used as maximum CFL allowed, and 

the time-step Δ𝑡 is adapted correspondingly.

Substeps As previously mentioned, the ADE equation (7) is advanced in 
time and the Darcy equation (9) is subsequently used to determine the 
flow field. The substeps 1 and 2 slightly differ in case of fully-implicit 
or semi-implicit formulations, as discussed below. The main steps of the 
algorithm follow:

1. The explicit terms of Eq. (7) are computed at the substep 𝑗:

𝐻𝑗 = −(𝐮𝑗𝐶𝑗 ) + (𝐵𝑦 +𝐵𝑧)𝐶𝑗 , (11)
where  is the discrete divergence operator and 𝐵𝑖 is the discrete 
second derivative in the 𝑖-th direction. Note that in the fully im-
plicit formulation the terms 𝐵𝑦,𝐵𝑧 are not included here, but are 
accounted in substep 2.

2. The scalar field is advanced within the substep:
𝐶𝑗+1 −𝐶𝑗

Δ𝑡 = 𝛾𝑙𝐻𝑗 + 𝜌𝑙𝐻𝑗−1 + 𝛼𝑙𝐵𝑥
(
𝐶𝑗 +𝐶𝑗+1

2 

)
. (12)

As previously mentioned, in the fully implicit formulation, the 
terms 𝐵𝑦,𝐵𝑧 are also included. The parameters 𝛾𝑙 ,𝜌𝑙 and 𝛼𝑙 are the 
coefficients associated with the time integration scheme employed. 
The scalar field at the next substep, 𝐶𝑗+1, is then determined.

3. A preliminary non-solenoidal velocity field is computed as

𝐮∗ = −𝑝𝑗 −𝐶𝑗+1𝐢, (13)
subject to no-penetration boundary conditions (4) at the walls with  denoting the discrete gradient operator.

4. A pressure correction field 𝜓 is determined solving the Poisson 
equation

𝜓 =𝐮∗. (14)
5. The updated velocity and pressure fields are determined as

𝐮𝑗+1 = 𝐮∗ − 𝜓 (15)
𝑝𝑗+1 = 𝑝𝑗 +𝜓 (16)
such that the updated velocity field 𝐮𝑗+1 is solenoidal by construc-
tion.

We choose to develop two solvers for the treatment of the diffusive 
term of the ADE (7), namely a fully implicit and a partially implicit (la-
beled in the following also as semi-implicit), motivated by the variety 
of flow conditions that may be encountered when studied convection in 
porous media. Indeed, also at large Rayleigh-Darcy numbers, when the 
problem is transient and the system saturates in solute, the driving force 
may reduce considerably pointing to the need of an implicit solver. The 
exact fully implicit formulation requires the solution of a large sparse 
system, correspondingly increasing the computational cost. To over-
come this issue, an approximate factorization is employed to reduce the 
sparse matrix to a factorization of tridiagonal matrices [36] (one in each 
implicit direction). The corresponding linear systems are then solved 
using a Thomas’ algorithm, with a Sherman-Morrison perturbation in 
the periodic direction [35]. This approximation will introduce an error 
𝑂(Δ𝑡3) and will have a cost 𝑂(𝑁), with 𝑁 the number of grid points in 
one direction. We wish to highlight again that the implicit/semi-implicit 
solution is only relative to the diffusive terms of the scalar field. We refer 
to [54] for an example in which all terms are treated implicitly.

3.2. Parallelization

We summarize here the parallelization strategy. We use a two-
dimensional pencil decomposition, implemented via the 2DECOMP li-
brary [55], raising the maximum number of processes from 𝑁 to 𝑁2

and correspondingly decreasing the wall-clock time per timestep when 
compared to slab decomposition strategy. However, it also comes along 
with limitation of producing larger overhead costs of halo communica-
tion when a large number of cores is employed. Further details of the 
parallelization strategy consisting of three main parts are explained be-
low.

1. Determination of preliminary velocity field: 𝑢∗ is computed from 
Eq. (13), with a difference between the implicit and the semi-
implicit case. In both cases, the domain is initially decomposed in 
pencils that are aligned in the wall-normal direction 𝑥, such that 
every process has access to all data along the 𝑥 direction, for the 
𝑦,𝑧 pairs (and the relative halos) within the pencil considered. In 
the semi-implicit case, 𝑢∗ can be obtained for each stencil in par-
allel, completely eliminating the all-to-all communications. In the 
fully-implicit case, integration of the diffusive terms in horizontal 
direction is required, and all-to-all communications in the form of 
pencil transforms from pencils aligned in the 𝑥 direction to 𝑦 and 
𝑧 directions are necessary. Despite the increase of communication 
time, the fully-implicit strategy can still be considerably advanta-
geous in reducing the time-to-solution, as the time step may be 
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2) pressure correction field 𝜓 is determined 
solving the Poisson equation

3) updated velocity and pressure fields, such that the 
updated velocity field is solenoidal by construction.
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)
Spacing Uniform in periodic direction, non-uniform or 

uniform in vertical direction
Parallelization MPI, 2D pencil-like domain decomposition
Time advancement 3rd-order Runge–Kutta (RK3) + 

Crank-Nicolson
Discretization diffusive term Fully-implicit or semi-implicit formulations
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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C) Numerical details

Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for Δ𝑡 → 0)
Spacing Uniform in periodic direction, non-uniform or 

uniform in vertical direction
Parallelization MPI, 2D pencil-like domain decomposition
Time advancement 3rd-order Runge–Kutta (RK3) + 

Crank-Nicolson
Discretization diffusive term Fully-implicit or semi-implicit formulations
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Fig. 1. Sketch of the computational domain with indication of the boundary 
conditions, namely periodic at the sides, no-penetration (𝑢 = 0) and free-slip at 
the walls (𝑥∗ = 0 and 𝑥∗ = 𝐿∗

𝑥). Gravitational acceleration 𝐠 is also indicated. 
Both Dirichlet and Neumann boundary conditions for the scalar field are possible 
at the walls.

The governing equations in dimensional (Sec. 2.1) and dimensionless 
form (Sec. 2.2) will be presented. We will focus on density-driven flows, 
where the source of buoyancy is the density variation induced by the 
presence of a solute, and with the solid being impermeable to the solute. 
In Sec. 2.2, the applicability of this approach to thermally driven flows 
will be briefly discussed.

2.1. Problem formulation

We consider a fluid-saturated porous medium in a three-dimensional 
domain having uniform porosity 𝜙 and permeability 𝜅. The flow is in-
compressible and governed by the Darcy law, and it is characterized 
by an unstable density difference (Δ𝜌∗) induced by the presence of a 
concentration field, 𝐶∗. A sketch of the domain is reported in Fig. 1. 
We indicate with 𝑦∗,𝑧∗ the horizontal directions, with 𝑥∗ the vertical 
direction (perpendicular to the walls) along which the gravitational ac-
celeration g is directed. The scalar field 𝐶∗ varies between 𝐶∗

min and 
𝐶∗
max. The evolution of this field is controlled by the advection-diffusion 

equation [11]

𝜙𝜕𝐶
∗

𝜕𝑡∗
+∇∗ ⋅ (𝐮∗𝐶∗ − 𝜙𝐷∇∗𝐶∗) = 0 , (1)

where 𝑡∗ is time, 𝐮∗ = (𝑢∗,𝑣∗,𝑤∗) is the volume-averaged velocity field 
and 𝐷 is the solute diffusivity, which is considered constant here. The 
superscript ∗ is used to indicate dimensional quantities. We assume that 
the fluid density, 𝜌∗, is a linear function of the concentration:

𝜌∗(𝐶∗) = 𝜌∗(𝐶∗
min) +Δ𝜌∗

𝐶∗ −𝐶∗
min

𝐶∗max −𝐶∗
min

, (2)

with Δ𝜌∗ = 𝜌∗(𝐶∗
max)−𝜌∗(𝐶∗

min). Assuming the validity of the Boussinesq 
approximation [47], the flow field is fully described by continuity and 
the Darcy equation,

∇∗ ⋅ 𝐮∗ = 0 , 𝐮∗ = −𝜅
𝜇
(
∇∗𝑃 ∗ + 𝜌∗𝑔𝐢

) , (3)

with 𝜇 the fluid viscosity (constant), 𝑃 ∗ the pressure and 𝐢 the vertical 
unit vector. The walls are impermeable to the fluid

𝐮∗ ⋅ 𝐧 = 0 ⇒ 
{
𝑢∗(𝑥∗ = 0) = 0
𝑢∗(𝑥∗ =𝐿∗

𝑥) = 0
(4)

with 𝐧 the unit vector perpendicular to the boundary, and slip at the 
walls is possible. At the upper and lower walls, Dirichlet (𝐶∗ fixed) or 
Neumann (𝜕𝑥∗𝐶∗ fixed) boundary conditions can be employed. Period-
icity is considered in the wall-parallel directions.

Fig. 2. Location of velocity (𝑢,𝑣,𝑤), pressure (𝑝) and scalar (𝐶) fields on a 
three-dimensional cell. Velocities are located at the sides (face centers) of the 
cell, pressure and scalar fields at the mid point (cell center). The coordinate 
system is also shown, being 𝑥 the wall-normal direction.

2.2. Dimensionless equations

Natural flow scales relevant to the convective system considered are 
the buoyancy velocity,  ∗ = 𝑔Δ𝜌∗𝜅∕𝜇, and the domain height, 𝐿∗

𝑥. Us-
ing the following set of dimensionless variables,

𝐶 =
𝐶∗ −𝐶∗

min
𝐶∗max −𝐶∗

min
, 𝑥 = 𝑥∗

𝐿∗
𝑥
, 𝐮 = 𝐮∗ ∗ , (5)

𝑡 = 𝑡∗
𝜙𝐿∗

𝑥∕ ∗ , 𝑝 = 𝑝∗

Δ𝜌∗𝑔𝐿∗
𝑥
, (6)

and introducing the reduced pressure 𝑝∗ = 𝑃 ∗ + 𝜌∗(𝐶∗
min)𝑔𝑥

∗, we obtain 
the dimensionless form of the governing Eqs. (1), (3):
𝜕𝐶
𝜕𝑡 +∇ ⋅

(
𝐮𝐶 − 1 

Ra
∇𝐶

)
= 0, (7)

∇ ⋅ 𝐮 = 0, (8)

𝐮 = − (∇𝑝+𝐶𝐢) , (9)
where

Ra =
𝑔Δ𝜌∗𝜅𝐿∗

𝑥
𝜙𝐷𝜇 =

 ∗𝐿∗
𝑥

𝜙𝐷 (10)

is the Rayleigh-Darcy number. Note that the gravity term has been 
non-dimensionalised substituting expression (2) into Darcy Eq. (3), and 
using the definition of buoyancy velocity  ∗. In absence of dispersion, 
the flow is completely defined by two dimensionless parameters: the 
Rayleigh-Darcy number Ra, and the domain aspect ratio 𝐿 = 𝐿∗

𝑦∕𝐿∗
𝑥

(and 𝐿∗
𝑧∕𝐿∗

𝑥 for 3D cases). In general, large values of Ra may also corre-
spond to large physical velocities and potentially lead to flows in which 
inertial effects may be non-negligible. However, the model considered 
here applies when dissipative effects (molecular diffusion and viscous 
dissipation) dominate over inertia, and therefore all the works consid-
ered to verify our results refer to pure Darcy flows, i.e. in absence of 
inertia effects.

A distinction should be made depending on the behavior of the solid 
phase with respect to the scalar transported. When the solid phase is 
impermeable to the scalar (e.g., when 𝐶 indicates a concentration field, 
as assumed in this section), the Rayleigh-Darcy number takes the form 
shown in Eq. (10). In contrast, when the solid is permeable to the scalar 
transported, e.g., in thermally-driven flows, the definition of Ra does not 
contain the porosity 𝜙. However, the dimensionless Eqs. (7)-(9) remain 
valid in both instances provided that in case the solid phase is perme-
able to the scalar, the two phases are in local thermal equilibrium (i.e., 
same thermal conductivity) and Ra is defined as specified above. Fur-
ther details on this matter are provided by Hewitt [14] and De Paoli 
[13].
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Also at large Rayleigh-Darcy numbers, 
when the problem is transient and the 
system saturates in solute, the driving 
force may reduce considerably pointing 

to the need of an implicit solver.

Scheme properties

Semi-implicit: 
High driving (high values of Ra): only the wall-normal component of ∇!𝐶 is 
solved implicitly, avoiding communications of non-local information for the 
computation of the implicit derivatives in the wall-parallel directions.

Small Δ𝑡
Few communications

Fully implicit: 
All the components of the scalar diffusive term are treated with a Crank–
Nicolson scheme.

Large Δ𝑡
More communications
Computationally more intensive
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3) Verification

AFID-Darcy III RESULTS

C. E↵ect of dispersion: influence of r
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FIG. 12. Concentration field at t = 104 for di↵erent values of the dispersion parameter r. The
field (a) corresponds to the case without dispersion (� ! 1).
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We double Ra with respect to current state-of-art simulations
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Case I – Rayleigh-Bénard convection
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Table 1
List of parameters used for the numerical simulations in the Rayleigh-Bénard case. Simulation 
number (indicated by RB#), Rayleigh-Darcy number (Ra) and domain width (𝐿 = 𝐿𝑦) are re-
ported, as well as the resolution employed in each direction. The time 𝜏 over which the statistics 
are computed, after the statistically-steady state is achieved, is indicated. Finally, time-averaged 
values of Nusselt number Nu (18) and relative standard deviation 𝜎(Nu), mean scalar dissipa-
tion 𝜒 (19) and Péclet number 𝑃𝑒 (20) are reported. All simulations have been performed on 
a grid that is uniform in horizontal directions (𝑦,𝑧) and is stretched in vertical direction (𝑥). 
In vertical direction, the position of the cell centers is defined according to the function 𝑥𝑐(𝑖) =
1∕2

[
1 + tanh(𝜂(2𝑖−𝑁𝑥 − 1)∕𝑁𝑥)

]
∕ tanh(𝜂), with 𝜂 = 4.0 and 𝑖 an integer (1 ≤ 𝑖 ≤𝑁𝑥).

Simulation Ra 𝐿 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝜏 Nu 𝜎(Nu) 𝜒 𝑃𝑒

RB1 1.75 × 103 2.0 128 × 384 × 1 1000 14.243 0.635 14.234 151.81 
RB2 2.50 × 103 2.0 128 × 512 × 1 1000 20.044 1.294 20.042 217.56 
RB3 5.00 × 103 2.0 128 × 768 × 1 1000 37.385 2.334 37.438 425.25 
RB4 1.00 × 104 2.0 256 × 1536 × 1 1000 71.131 3.278 71.188 836.55
RB5 2.00 × 104 2.0 512 × 3072 × 1 1000 140.54 4.350 140.54 1669.8 
RB6 3.20 × 104 2.0 896 × 5120 × 1 500 222.91 5.035 222.93 2663.8 
RB7 4.00 × 104 2.0 1024 × 6144 × 1 400 274.14 5.599 274.16 3304.5 
RB8 5.00 × 104 1.0 1280 × 3840 × 1 250 341.70 8.363 341.74 4125.2
RB9 8.00 × 104 1.0 2048 × 6144 × 1 200 545.56 10.92 545.62 6603.1 
RB10 1.00 × 105 1.0 2560 × 7680 × 1 175 679.03 12.09 679.07 8232.2 
RB11 1.50 × 105 1.0 4096 × 12288 × 1 80 995.84 16.79 995.47 12209 
RB12 2.00 × 105 1.0 5120 × 15360 × 1 64 1315.8 17.23 1315.7 16214 

Table 2
Numerical details of the simulations performed in the one-sided configuration. Simula-
tion number (indicated by OS#), Rayleigh-Darcy number (Ra) and domain width (𝐿) 
are reported. To compare against the results of Slim [53], the domain width is defined 
as 𝐿 = 105∕Ra. The resolution is constant in horizontal direction (𝑁𝑦 = 10240) and in-
creases with Ra in vertical direction. Simulations are performed for a time 𝜏 . Finally, 
the same grid stretching function employed in the RB case (see Table 1) is used here, 
and the corresponding stretching parameter 𝜂 is indicated. The time averaged flux 
during the constant flux regime (𝐹const), measured in the interval 2 × 104 < 𝑡 < 15Ra, 
is finally reported.
Simulation Ra 𝐿 = 105∕Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝜂 𝜏 𝐹const
OS1 1 × 102 1000 64 × 10240 × 1 2.0 200 -
OS2 2 × 102 500 64 × 10240 × 1 2.0 200 -
OS3 5 × 102 200 64 × 10240 × 1 3.0 200 -
OS4 1 × 102 100 128 × 10240 × 1 3.0 200 -
OS5 2 × 103 50 128 × 10240 × 1 4.0 200 0.01667 
OS6 5 × 103 20 128 × 10240 × 1 4.0 200 0.01697 
OS7 1 × 104 10 256 × 10240 × 1 4.0 200 0.01702 
OS8 2 × 104 5 512 × 10240 × 1 4.0 200 0.01729 
OS9 5 × 104 2 1024 × 10240× 1 4.0 200 0.01730 
OS10 1 × 105 1 2048 × 10240× 1 4.0 200 0.01734 

Pe =
√
(Nu−1)Ra, (21)

as it also appears from the results shown in compensated form in the 
inset of Fig. 4(c).

In summary, we performed 2D Rayleigh-Bénard simulations at large 
Ra and our results align well with literature findings. We have also 
doubled the Ra range investigated, corresponding to an increase of com-
putational time of approximately 8 times.

4.2. One-sided convection

This configuration mimics the essential dynamics of convection in a 
semi-infinite domain, where the buoyancy supply is imposed at the up-
per boundary. The flow configuration with indication of the boundary 
conditions is represented in Fig. 5(a). The transient behaviour of this 
system has been thoroughly characterized [60,53,61], and can be cap-
tured by simple “box models”, which will be used here to verify present 
results.

The domain is initially filled by pure fluid (𝐶 = 0), except at the top 
wall where the solute concentration is maximum. In addition, the fluid 
is initially everywhere at rest. With reference to a two-dimensional case, 
the initial conditions read:

𝐮(𝑥,𝑦, 𝑡 = 0) = 0 (22)

𝐶(𝑥,𝑦, 𝑡 = 0) =
{

0, if 0 ≤ 𝑥 < 1
1, if 𝑥 = 1

. (23)

In addition, top and bottom boundaries are impermeable to fluid (4)
(no-penetration), the top wall is at constant concentration whereas the 
bottom one is impermeable to the solute (no-flux):
{
𝜕𝑥𝐶(𝑥,𝑦, 𝑡) = 0 if 𝑥 = 0
𝐶(𝑥,𝑦, 𝑡) = 1 if 𝑥 = 1

. (24)

In absence of flow, the step-like concentration profile (23) combined 
with the boundary conditions (24) allows to determine an analytical 
self-similar solution of Eq. (7) for the evolution of the concentration 
field [53,61]:

𝐶(𝑥,𝑦, 𝑡 = 𝑡0) = 1 + erf
[
(𝑥− 1)Ra√

4𝑡0 Ra

]
. (25)

In order to achieve the same initial condition for all the performed simu-
lations, we initialize the concentration field as in Eq. (25) with an initial 
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Table 1
List of parameters used for the numerical simulations in the Rayleigh-Bénard case. Simulation 
number (indicated by RB#), Rayleigh-Darcy number (Ra) and domain width (𝐿 = 𝐿𝑦) are re-
ported, as well as the resolution employed in each direction. The time 𝜏 over which the statistics 
are computed, after the statistically-steady state is achieved, is indicated. Finally, time-averaged 
values of Nusselt number Nu (18) and relative standard deviation 𝜎(Nu), mean scalar dissipa-
tion 𝜒 (19) and Péclet number 𝑃𝑒 (20) are reported. All simulations have been performed on 
a grid that is uniform in horizontal directions (𝑦,𝑧) and is stretched in vertical direction (𝑥). 
In vertical direction, the position of the cell centers is defined according to the function 𝑥𝑐(𝑖) =
1∕2

[
1 + tanh(𝜂(2𝑖−𝑁𝑥 − 1)∕𝑁𝑥)

]
∕ tanh(𝜂), with 𝜂 = 4.0 and 𝑖 an integer (1 ≤ 𝑖 ≤𝑁𝑥).

Simulation Ra 𝐿 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝜏 Nu 𝜎(Nu) 𝜒 𝑃𝑒

RB1 1.75 × 103 2.0 128 × 384 × 1 1000 14.243 0.635 14.234 151.81 
RB2 2.50 × 103 2.0 128 × 512 × 1 1000 20.044 1.294 20.042 217.56 
RB3 5.00 × 103 2.0 128 × 768 × 1 1000 37.385 2.334 37.438 425.25 
RB4 1.00 × 104 2.0 256 × 1536 × 1 1000 71.131 3.278 71.188 836.55
RB5 2.00 × 104 2.0 512 × 3072 × 1 1000 140.54 4.350 140.54 1669.8 
RB6 3.20 × 104 2.0 896 × 5120 × 1 500 222.91 5.035 222.93 2663.8 
RB7 4.00 × 104 2.0 1024 × 6144 × 1 400 274.14 5.599 274.16 3304.5 
RB8 5.00 × 104 1.0 1280 × 3840 × 1 250 341.70 8.363 341.74 4125.2
RB9 8.00 × 104 1.0 2048 × 6144 × 1 200 545.56 10.92 545.62 6603.1 
RB10 1.00 × 105 1.0 2560 × 7680 × 1 175 679.03 12.09 679.07 8232.2 
RB11 1.50 × 105 1.0 4096 × 12288 × 1 80 995.84 16.79 995.47 12209 
RB12 2.00 × 105 1.0 5120 × 15360 × 1 64 1315.8 17.23 1315.7 16214 

Table 2
Numerical details of the simulations performed in the one-sided configuration. Simula-
tion number (indicated by OS#), Rayleigh-Darcy number (Ra) and domain width (𝐿) 
are reported. To compare against the results of Slim [53], the domain width is defined 
as 𝐿 = 105∕Ra. The resolution is constant in horizontal direction (𝑁𝑦 = 10240) and in-
creases with Ra in vertical direction. Simulations are performed for a time 𝜏 . Finally, 
the same grid stretching function employed in the RB case (see Table 1) is used here, 
and the corresponding stretching parameter 𝜂 is indicated. The time averaged flux 
during the constant flux regime (𝐹const), measured in the interval 2 × 104 < 𝑡 < 15Ra, 
is finally reported.
Simulation Ra 𝐿 = 105∕Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝜂 𝜏 𝐹const
OS1 1 × 102 1000 64 × 10240 × 1 2.0 200 -
OS2 2 × 102 500 64 × 10240 × 1 2.0 200 -
OS3 5 × 102 200 64 × 10240 × 1 3.0 200 -
OS4 1 × 102 100 128 × 10240 × 1 3.0 200 -
OS5 2 × 103 50 128 × 10240 × 1 4.0 200 0.01667 
OS6 5 × 103 20 128 × 10240 × 1 4.0 200 0.01697 
OS7 1 × 104 10 256 × 10240 × 1 4.0 200 0.01702 
OS8 2 × 104 5 512 × 10240 × 1 4.0 200 0.01729 
OS9 5 × 104 2 1024 × 10240× 1 4.0 200 0.01730 
OS10 1 × 105 1 2048 × 10240× 1 4.0 200 0.01734 

Pe =
√
(Nu−1)Ra, (21)

as it also appears from the results shown in compensated form in the 
inset of Fig. 4(c).

In summary, we performed 2D Rayleigh-Bénard simulations at large 
Ra and our results align well with literature findings. We have also 
doubled the Ra range investigated, corresponding to an increase of com-
putational time of approximately 8 times.

4.2. One-sided convection

This configuration mimics the essential dynamics of convection in a 
semi-infinite domain, where the buoyancy supply is imposed at the up-
per boundary. The flow configuration with indication of the boundary 
conditions is represented in Fig. 5(a). The transient behaviour of this 
system has been thoroughly characterized [60,53,61], and can be cap-
tured by simple “box models”, which will be used here to verify present 
results.

The domain is initially filled by pure fluid (𝐶 = 0), except at the top 
wall where the solute concentration is maximum. In addition, the fluid 
is initially everywhere at rest. With reference to a two-dimensional case, 
the initial conditions read:

𝐮(𝑥,𝑦, 𝑡 = 0) = 0 (22)

𝐶(𝑥,𝑦, 𝑡 = 0) =
{

0, if 0 ≤ 𝑥 < 1
1, if 𝑥 = 1

. (23)

In addition, top and bottom boundaries are impermeable to fluid (4)
(no-penetration), the top wall is at constant concentration whereas the 
bottom one is impermeable to the solute (no-flux):
{
𝜕𝑥𝐶(𝑥,𝑦, 𝑡) = 0 if 𝑥 = 0
𝐶(𝑥,𝑦, 𝑡) = 1 if 𝑥 = 1

. (24)

In absence of flow, the step-like concentration profile (23) combined 
with the boundary conditions (24) allows to determine an analytical 
self-similar solution of Eq. (7) for the evolution of the concentration 
field [53,61]:

𝐶(𝑥,𝑦, 𝑡 = 𝑡0) = 1 + erf
[
(𝑥− 1)Ra√

4𝑡0 Ra

]
. (25)

In order to achieve the same initial condition for all the performed simu-
lations, we initialize the concentration field as in Eq. (25) with an initial 
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Fig. 4. (a) Nusselt number (Nu) as a function of the Rayleigh-Darcy number 
(Ra) compared to literature results [15,26,58,16]. (b) Nusselt number shown in 
compensated form, Nu∕Ra, as a function of Ra. Errorbars indicate the standard 
deviation (𝜎) of Nusselt in time. (c) Main panel: Péclet number computed as 
defined as in Eq. (20). These measurements are in excellent agreement with 
the theoretical prediction (21) by [17]. Inset: Péclet number compensated with √
(Nu−1)Ra is shown as a function of Ra, for all simulations considered.

time 𝑡0 = 10∕Ra, which is the first instant considered. Finally, a random 
perturbation (white noise) is added.

Results are verified against 2D numerical simulations of [53], and we 
replicate the same simulations in terms of Rayleigh-Darcy number (Ra) 
and domain width (𝐿 = 105∕Ra). These two parameters and the initial 
condition completely define the system. A summary of numerical and 
flow parameters for the performed simulations is reported in Table 2. 
The solute flux through the top boundary is the main response parameter 
and it is used to compare flows having different Ra. It is quantified by 
the mean concentration gradient at the top wall and computed as

Fig. 5. Instantaneous concentration fields for simulation OS6 (the time is re-
ported on top of each panel). Indication of the coordinates reference frame (𝑥,𝑦), 
gravity (𝐠) and boundary conditions is also reported in (a). Only a small portion 
of domain in horizontal direction is shown (0 ≤ 𝑦 ≤ 4). Different phases of the 
mixing process are illustrated: (a) finger merging, (b-d) constant flux and (e-h) 
shutdown of convection.

𝐹 (𝑡) = 1 
Ra𝐿

𝐿 

∫
0 

𝜕𝐶
𝜕𝑥 

||||𝑥=1
d𝑦, (26)

with 𝐿 =𝐿𝑦 the domain extension in horizontal direction.
The dynamics of this system has been accurately described in pre-

vious works [62,53,61], and we briefly recall here the main features of 
the flow. Its evolution is illustrated in Fig. 5 for the simulation OS6. 
However, a similar behavior holds for all Ra sufficiently large such that 
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Fig. 4. (a) Nusselt number (Nu) as a function of the Rayleigh-Darcy number 
(Ra) compared to literature results [15,26,58,16]. (b) Nusselt number shown in 
compensated form, Nu∕Ra, as a function of Ra. Errorbars indicate the standard 
deviation (𝜎) of Nusselt in time. (c) Main panel: Péclet number computed as 
defined as in Eq. (20). These measurements are in excellent agreement with 
the theoretical prediction (21) by [17]. Inset: Péclet number compensated with √
(Nu−1)Ra is shown as a function of Ra, for all simulations considered.

time 𝑡0 = 10∕Ra, which is the first instant considered. Finally, a random 
perturbation (white noise) is added.

Results are verified against 2D numerical simulations of [53], and we 
replicate the same simulations in terms of Rayleigh-Darcy number (Ra) 
and domain width (𝐿 = 105∕Ra). These two parameters and the initial 
condition completely define the system. A summary of numerical and 
flow parameters for the performed simulations is reported in Table 2. 
The solute flux through the top boundary is the main response parameter 
and it is used to compare flows having different Ra. It is quantified by 
the mean concentration gradient at the top wall and computed as

Fig. 5. Instantaneous concentration fields for simulation OS6 (the time is re-
ported on top of each panel). Indication of the coordinates reference frame (𝑥,𝑦), 
gravity (𝐠) and boundary conditions is also reported in (a). Only a small portion 
of domain in horizontal direction is shown (0 ≤ 𝑦 ≤ 4). Different phases of the 
mixing process are illustrated: (a) finger merging, (b-d) constant flux and (e-h) 
shutdown of convection.

𝐹 (𝑡) = 1 
Ra𝐿

𝐿 

∫
0 

𝜕𝐶
𝜕𝑥 

||||𝑥=1
d𝑦, (26)

with 𝐿 =𝐿𝑦 the domain extension in horizontal direction.
The dynamics of this system has been accurately described in pre-

vious works [62,53,61], and we briefly recall here the main features of 
the flow. Its evolution is illustrated in Fig. 5 for the simulation OS6. 
However, a similar behavior holds for all Ra sufficiently large such that 
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Fig. 4. (a) Nusselt number (Nu) as a function of the Rayleigh-Darcy number 
(Ra) compared to literature results [15,26,58,16]. (b) Nusselt number shown in 
compensated form, Nu∕Ra, as a function of Ra. Errorbars indicate the standard 
deviation (𝜎) of Nusselt in time. (c) Main panel: Péclet number computed as 
defined as in Eq. (20). These measurements are in excellent agreement with 
the theoretical prediction (21) by [17]. Inset: Péclet number compensated with √
(Nu−1)Ra is shown as a function of Ra, for all simulations considered.

time 𝑡0 = 10∕Ra, which is the first instant considered. Finally, a random 
perturbation (white noise) is added.

Results are verified against 2D numerical simulations of [53], and we 
replicate the same simulations in terms of Rayleigh-Darcy number (Ra) 
and domain width (𝐿 = 105∕Ra). These two parameters and the initial 
condition completely define the system. A summary of numerical and 
flow parameters for the performed simulations is reported in Table 2. 
The solute flux through the top boundary is the main response parameter 
and it is used to compare flows having different Ra. It is quantified by 
the mean concentration gradient at the top wall and computed as

Fig. 5. Instantaneous concentration fields for simulation OS6 (the time is re-
ported on top of each panel). Indication of the coordinates reference frame (𝑥,𝑦), 
gravity (𝐠) and boundary conditions is also reported in (a). Only a small portion 
of domain in horizontal direction is shown (0 ≤ 𝑦 ≤ 4). Different phases of the 
mixing process are illustrated: (a) finger merging, (b-d) constant flux and (e-h) 
shutdown of convection.

𝐹 (𝑡) = 1 
Ra𝐿

𝐿 

∫
0 

𝜕𝐶
𝜕𝑥 

||||𝑥=1
d𝑦, (26)

with 𝐿 =𝐿𝑦 the domain extension in horizontal direction.
The dynamics of this system has been accurately described in pre-

vious works [62,53,61], and we briefly recall here the main features of 
the flow. Its evolution is illustrated in Fig. 5 for the simulation OS6. 
However, a similar behavior holds for all Ra sufficiently large such that 
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Fig. 4. (a) Nusselt number (Nu) as a function of the Rayleigh-Darcy number 
(Ra) compared to literature results [15,26,58,16]. (b) Nusselt number shown in 
compensated form, Nu∕Ra, as a function of Ra. Errorbars indicate the standard 
deviation (𝜎) of Nusselt in time. (c) Main panel: Péclet number computed as 
defined as in Eq. (20). These measurements are in excellent agreement with 
the theoretical prediction (21) by [17]. Inset: Péclet number compensated with √
(Nu−1)Ra is shown as a function of Ra, for all simulations considered.

time 𝑡0 = 10∕Ra, which is the first instant considered. Finally, a random 
perturbation (white noise) is added.

Results are verified against 2D numerical simulations of [53], and we 
replicate the same simulations in terms of Rayleigh-Darcy number (Ra) 
and domain width (𝐿 = 105∕Ra). These two parameters and the initial 
condition completely define the system. A summary of numerical and 
flow parameters for the performed simulations is reported in Table 2. 
The solute flux through the top boundary is the main response parameter 
and it is used to compare flows having different Ra. It is quantified by 
the mean concentration gradient at the top wall and computed as

Fig. 5. Instantaneous concentration fields for simulation OS6 (the time is re-
ported on top of each panel). Indication of the coordinates reference frame (𝑥,𝑦), 
gravity (𝐠) and boundary conditions is also reported in (a). Only a small portion 
of domain in horizontal direction is shown (0 ≤ 𝑦 ≤ 4). Different phases of the 
mixing process are illustrated: (a) finger merging, (b-d) constant flux and (e-h) 
shutdown of convection.
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d𝑦, (26)

with 𝐿 =𝐿𝑦 the domain extension in horizontal direction.
The dynamics of this system has been accurately described in pre-

vious works [62,53,61], and we briefly recall here the main features of 
the flow. Its evolution is illustrated in Fig. 5 for the simulation OS6. 
However, a similar behavior holds for all Ra sufficiently large such that 
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Fig. 6. Time-dependent evolution of the dimensionless dissolution rate 𝐹 (26)
for all simulations listed in Table 2. The flux expected during the diffusive (𝐹diff, 
(27)), constant (𝐹const, (28)) and shutdown phases (𝐹sd, (29)) are reported. Sym-
bols indicate the time-instants relative to the concentration fields of Fig. 5.

fingers can form and merge (Ra ≥ 2 × 103). The concentration fields in 
correspondence of increasing times (𝑡, reported on top of each panel) 
are shown. The flow evolves from the initial step-like, self-similar profile 
(25) driven by the growth of the diffusive layer at the top of wall. After-
wards, the perturbation of the concentration field within the boundary 
layer grows linearly, and this phase is labeled as linear growth [53]. Con-
vection is nearly absent and an analytical prediction of the flux 𝐹 is 
computed from (26) with the concentration profile given by (25), which 
gives:

𝐹diff(𝑡) =
1 √
𝜋𝑡Ra

, with 𝑡Ra < 103, (27)

where the time limit (103 in this case) is set by the amplitude of the 
initial perturbation. The evolution of the flux for all simulations consid-
ered is reported in Fig. 6, and it is initially well described by Eq. (27)
for all Ra. At a later stage finger-like structures form and interact. This 
regime is hard to model analytically as it is first characterized by a flux 
growth (Fig. 6) followed by the merging of the fingers (Fig. 5a).

When the fingers have sufficiently grown, they remain nearly con-
stant in width and their dynamics is independent of time and Ra. For 
OS6, this state is approximately achieved at 𝑡 = 3.0 (Fig. 5b), when the 
flow enters a quasi-steady state characterized by a constant flux 𝐹const. 
As shown in Fig. 6, the larger the Ra, the longer this regime will be. The 
value of flux has been observed [63,53,60,61] to be:

𝐹const ≈ 0.017, (28)
in excellent agreement with our measurements performed in the inter-
val 2 × 104 < 𝑡Ra < 15Ra and reported in Table 2. This quasi-steady 
dynamics, with the fingers continuously growing in vertical direction, is 
arrested when the flow at top boundary feels the presence of the bottom 
wall. At 𝑡 ≈ 7.0 (Fig. 5c), the fingers have already reached the bottom 
boundary, while the flux remains steady at ≈ 0.017 (see Fig. 6).

It takes a time approximately equal to 15Ra−16Ra for the upper 
fluid layer to be influenced by the increasingly higher mean concen-
tration within the domain (Fig. 5d): at this point, the average solute 
concentration in the upper wall region is increased, and it is progres-
sively harder to mix solute. The system enters the so-called shutdown 
regime, characterized by the reduction of the flux reported in Fig. 6. The 
increase of the mean concentration in the system appears in Figs. 5(e)-
(h). The solute flux in this phase has been modeled in detailed by [60] 
and [53]. These authors used two different approaches, but achieved a 
similar result (see [13] for additional details). In this work we choose 
to compare against the model proposed by [53], which predicts a value 
of flux 𝐹sd during the shutdown regime to be:

𝐹sd =
16.8 

[0.73(𝑡− 16) + 31.5)]2
with 𝑡 > 16, (29)

Table 3
Numerical details of the simulations performed in 
Rayleigh-Taylor configuration. Simulation number (in-
dicated by RT#) and Rayleigh-Darcy number (Ra) are 
reported. Note that in order to compare our findings 
against the results of [64] the domain width is fixed 
to 𝐿 = 𝐿𝑦 = 𝐿𝑧 = 1∕4, whereas the height is 𝐿𝑥 = 1. 
A uniform grid is employed in this case, with resolution 
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧. The largest simulation (RT4), in which 
Ra is doubled with respect to RT3, is performed on a 
domain with 𝐿 = 1∕8 to keep the computational cost 
affordable.
Simulation Ra 𝐿 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧

RT1 3.20 × 104 1/4 2048 × 512 × 512
RT2 6.40 × 104 1/4 4096 × 1024 × 1024
RT3 1.28 × 105 1/4 8192 × 2048 × 2048
RT4 2.56 × 105 1/8 16384 × 2048 × 2048

indicated in Fig. 6 for each Ra considered (gray lines). We observe that 
present simulations are in excellent agreement with the model predic-
tions.

In summary, we have performed numerical simulations of one-sided 
systems over a wide range of Rayleigh-Darcy numbers, namely 102 ≤
Ra ≤ 105. Simulations have been performed for very long times (𝜏 =
200), to explore in detail all the regimes involved. Our results are in 
excellent agreement with previous numerical and theoretical findings, 
and we have also explored a wider range of parameters, having doubled 
the Rayleigh-Darcy number of OS10 as compared to existing literature 
results.

4.3. Rayleigh-Taylor flow

A Rayleigh-Taylor instability is simulated, consisting of two miscible 
fluids having different density and arranged in an unstable configura-
tion, i.e., with the denser fluid layer (𝐶 = 1) lying on top of the lighter 
one (𝐶 = 0). The top and bottom boundaries are assumed to be imper-
meable to fluid and solute. The system, with indication of the boundary 
conditions, is illustrated in Fig. 7(a).

The two layers are initially separated by a flat and horizontal inter-
face located at the centerline of the domain, and the fluid is still. In 
terms of velocity and concentration fields, the initial condition reads:

𝐮(𝑥,𝑦,𝑧, 𝑡 = 0) = 0, (30)

𝐶(𝑥,𝑦,𝑧, 𝑡 = 0) =
⎧
⎪
⎨
⎪⎩

0, if 𝑥 < 1∕2
1∕2, if 𝑥 = 1∕2
1, if 𝑥 > 1∕2

. (31)

The impermeability condition is implemented as no-penetration and 
no-flux condition for the vertical velocity and the concentration fields, 
respectively:

𝑢|||𝑥=0 = 𝑢
|||𝑥=1 = 0 , 𝜕𝐶

𝜕𝑥 
||||𝑥=0

= 𝜕𝐶
𝜕𝑥 

||||𝑥=1
= 0. (32)

An exact self-similar solution of Eq. (7) for the initial system dynamics 
may be determined. Initially, there is no flow (𝐮 = 0) and using the 
boundary conditions (32) combined with the initial condition (31), the 
analytical solution reads [52]:

𝐶(𝑥,𝑦,𝑧, 𝑡 = 𝑡0) =
1
2

[
1 + erf

(
(𝑥− 1∕2)Ra
2
√
𝑡0 Ra

)]
. (33)

We initialize the concentration field as in Eq. (33) with an initial time 
𝑡 = 100∕Ra, which is the first instant considered, plus a random pertur-
bation (white noise).

The flow undergoes a transient dynamics led by the density contrast 
between the fluid layers, inducing a progressive mixing [52,51,64]. To 
verify the code we compare to the results of Boffetta et al. [64] with the 
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Fig. 9. Evolution of the mixing length ℎ as a function of time is reported in (a), 
and in compensated form (ℎ∕𝑡) in (b), for all simulations considered. Results are 
compared against numerical simulations of [64]. For greater clarity, in (a) the 
profiles corresponding to RT2, RT3 and RT4 are shifted upwards by 1/2, 1 and 
3/2, respectively. The result achieved asymptotically in (b) is in agreement with 
literature results (symbols), and with the value of 𝑑ℎ∕𝑑𝑡 reported by Boffetta et 
al. [64], namely 0.55≤ 𝑑ℎ∕𝑑𝑡 ≤ 0.59.

are reported in Fig. 8(a) where, for greater clarity, only the upper part 
of the domain (1∕2 ≤ 𝑥 ≤ 1) is shown. Present simulations are in excel-
lent agreement with literature results for 0.2 ≤ 𝑡 ≤ 1.0. Unsurprisingly, 
a small discrepancy is observed for later times (𝑡 = 1.2) and far from 
the mid height, due to the different boundary conditions employed here 
with respect to Boffetta et al. [64]. It appears from Figs. 8(a-c) that for 
𝑡 = 1.2 the fingers approach the horizontal walls, and the concentration 
and the velocity fields are perturbed in the region 0.1 ≤ 𝑥 ≤ 0.9). As a 
result the fingers feel the influence of the boundaries and deviate from 
the unconfined case.

Finally, results are compared in terms of the mixing length ℎ, which 
represents the vertical extension of the layer over which the two fluids 
are mixed, i.e. where the density is not uniform and the velocity is not 
zero. Multiple definitions have been proposed to quantify this observ-
able. Among others, the most common ones are based on a threshold 
value of the horizontally-averaged density profile or on integral quanti-
ties [40]. Here we consider the definition proposed by Boffetta et al. 
[65], which employs a nonlinear diffusive model developed for tur-
bulent RT mixing at high Reynolds numbers. The model predicts the 
horizontally-averaged concentration profile within the mixing layer to 
follow the polynomial profile

𝐶(𝑡) = 1
4
𝑥− 1∕2
𝑥1

[
3−

(
𝑥− 1∕2
𝑥1

)2]
, (34)

where 𝑥1 represents half size of the mixing layer, and therefore ℎ = 2𝑥1. 
The evolution of ℎ(𝑡) is reported in Fig. 9(a), where it is compared 
against previous measurements [64]. For greater clarity, the profiles cor-
responding to RT2, RT3 and RT4 are shifted upwards by 1/2, 1 and 3/2, 
respectively. Also in this case, our findings are in excellent agreement 
with literature results. Finally, results are shown in compensated form 
(ℎ∕𝑡) in Fig. 9(b) for all simulations considered. The values achieved 

Fig. 10. (a) Strong scaling (grid 10243): the wall-clock per time step is reported 
as a function of the number of MPI processes. (b) Comparison of the performance 
of the implicit and the semi-implicit solvers in terms of time required to reach 
the solution. The one-sided case is considered, and the simulations OS2, OS5 
and OS8 are compared (see Table 2). Despite being more expensive in terms of 
wall-clock time per time step, the implicit algorithm allows a much faster time-
to-solution. The gain compared to the semi-implicit case increases with Ra.

asymptotically are in agreement with literature results of 𝑑ℎ∕𝑑𝑡, namely 
0.55 ≤ 𝑑ℎ∕𝑑𝑡 ≤ 0.59 [64].

5. Performance

The computational performance is computed in terms of strong scal-
ing, time-to-solution and weak scaling. The performance of the code 
depends on the scheme employed to treat the diffusive term of the ADE, 
namely semi-implicit or implicit, as the number of communications and 
the size of the halos varies. The tests are performed on supercomputer 
Discoverer, hosted by Sofia Tech Park (Bulgaria), in which each node 
consists of two AMD EPYC 7H12 64-Core Processor with 256 GB of 
RAM.

The grid considered for the strong scaling has a dimension of 10243
points (largest grid that can be handled by 64 cores), and the results 
are reported in Fig. 10(a), where the wall-clock per time step is shown 
as a function of the number of MPI processes. The number of used MPI 
processes is double than the number of cores considered, and it varies 
between 64 and 16384. Results indicate a linear scaling up to 4096 MPI 
processes and 8192 MPI processes, for the semi-implicit and the implicit 
cases, respectively. The implicit algorithm is always more expensive in 
terms of time per time step compared to the semi-implicit one, which 
is not surprising given the additional computation and communications 
required. However, the implicit algorithm may still be considered ad-
vantageous in transient problems at high Ra when diffusion becomes 
the dominant mechanism. This situation occurs, for instance, for the 
one-sided system presented in Sec. 4.2 or the Rayleigh-Taylor system 
discussed in Sec. 4.3. In the OS flow, during the shutdown phase the sys-
tem undergoes a regime that is fully controlled by diffusion. To evaluate 
the advantage introduced by the fully implicit solution of the diffusive 
term, we compared the time-to-solution for simulations OS2, OS5 and 
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Fig. 9. Evolution of the mixing length ℎ as a function of time is reported in (a), 
and in compensated form (ℎ∕𝑡) in (b), for all simulations considered. Results are 
compared against numerical simulations of [64]. For greater clarity, in (a) the 
profiles corresponding to RT2, RT3 and RT4 are shifted upwards by 1/2, 1 and 
3/2, respectively. The result achieved asymptotically in (b) is in agreement with 
literature results (symbols), and with the value of 𝑑ℎ∕𝑑𝑡 reported by Boffetta et 
al. [64], namely 0.55≤ 𝑑ℎ∕𝑑𝑡 ≤ 0.59.

are reported in Fig. 8(a) where, for greater clarity, only the upper part 
of the domain (1∕2 ≤ 𝑥 ≤ 1) is shown. Present simulations are in excel-
lent agreement with literature results for 0.2 ≤ 𝑡 ≤ 1.0. Unsurprisingly, 
a small discrepancy is observed for later times (𝑡 = 1.2) and far from 
the mid height, due to the different boundary conditions employed here 
with respect to Boffetta et al. [64]. It appears from Figs. 8(a-c) that for 
𝑡 = 1.2 the fingers approach the horizontal walls, and the concentration 
and the velocity fields are perturbed in the region 0.1 ≤ 𝑥 ≤ 0.9). As a 
result the fingers feel the influence of the boundaries and deviate from 
the unconfined case.

Finally, results are compared in terms of the mixing length ℎ, which 
represents the vertical extension of the layer over which the two fluids 
are mixed, i.e. where the density is not uniform and the velocity is not 
zero. Multiple definitions have been proposed to quantify this observ-
able. Among others, the most common ones are based on a threshold 
value of the horizontally-averaged density profile or on integral quanti-
ties [40]. Here we consider the definition proposed by Boffetta et al. 
[65], which employs a nonlinear diffusive model developed for tur-
bulent RT mixing at high Reynolds numbers. The model predicts the 
horizontally-averaged concentration profile within the mixing layer to 
follow the polynomial profile

𝐶(𝑡) = 1
4
𝑥− 1∕2
𝑥1

[
3−

(
𝑥− 1∕2
𝑥1

)2]
, (34)

where 𝑥1 represents half size of the mixing layer, and therefore ℎ = 2𝑥1. 
The evolution of ℎ(𝑡) is reported in Fig. 9(a), where it is compared 
against previous measurements [64]. For greater clarity, the profiles cor-
responding to RT2, RT3 and RT4 are shifted upwards by 1/2, 1 and 3/2, 
respectively. Also in this case, our findings are in excellent agreement 
with literature results. Finally, results are shown in compensated form 
(ℎ∕𝑡) in Fig. 9(b) for all simulations considered. The values achieved 

Fig. 10. (a) Strong scaling (grid 10243): the wall-clock per time step is reported 
as a function of the number of MPI processes. (b) Comparison of the performance 
of the implicit and the semi-implicit solvers in terms of time required to reach 
the solution. The one-sided case is considered, and the simulations OS2, OS5 
and OS8 are compared (see Table 2). Despite being more expensive in terms of 
wall-clock time per time step, the implicit algorithm allows a much faster time-
to-solution. The gain compared to the semi-implicit case increases with Ra.

asymptotically are in agreement with literature results of 𝑑ℎ∕𝑑𝑡, namely 
0.55 ≤ 𝑑ℎ∕𝑑𝑡 ≤ 0.59 [64].

5. Performance

The computational performance is computed in terms of strong scal-
ing, time-to-solution and weak scaling. The performance of the code 
depends on the scheme employed to treat the diffusive term of the ADE, 
namely semi-implicit or implicit, as the number of communications and 
the size of the halos varies. The tests are performed on supercomputer 
Discoverer, hosted by Sofia Tech Park (Bulgaria), in which each node 
consists of two AMD EPYC 7H12 64-Core Processor with 256 GB of 
RAM.

The grid considered for the strong scaling has a dimension of 10243
points (largest grid that can be handled by 64 cores), and the results 
are reported in Fig. 10(a), where the wall-clock per time step is shown 
as a function of the number of MPI processes. The number of used MPI 
processes is double than the number of cores considered, and it varies 
between 64 and 16384. Results indicate a linear scaling up to 4096 MPI 
processes and 8192 MPI processes, for the semi-implicit and the implicit 
cases, respectively. The implicit algorithm is always more expensive in 
terms of time per time step compared to the semi-implicit one, which 
is not surprising given the additional computation and communications 
required. However, the implicit algorithm may still be considered ad-
vantageous in transient problems at high Ra when diffusion becomes 
the dominant mechanism. This situation occurs, for instance, for the 
one-sided system presented in Sec. 4.2 or the Rayleigh-Taylor system 
discussed in Sec. 4.3. In the OS flow, during the shutdown phase the sys-
tem undergoes a regime that is fully controlled by diffusion. To evaluate 
the advantage introduced by the fully implicit solution of the diffusive 
term, we compared the time-to-solution for simulations OS2, OS5 and 
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Fig. 7. Evolution of a Rayleigh-Taylor instability in a porous medium with Ra = 3.2 × 104 (simulation RT1 in Table 3). Top panels (i): 3D visualization of the 
concentration field. Bottom panels (ii): concentration field on the horizontal (𝑦,𝑧) plane located at the mid domain height (𝑥= 1∕2). The time instant considered is 
indicated at the bottom, and varies between 𝑡= 0 (a) and 𝑡= 20.0 (f).

Fig. 8. Quantitative comparison against Boffetta et al. [64] for simulation RT3 (Ra = 1.28×105). The evolution of the system is analyzed at different instants in terms 
of horizontally-averaged profiles of (a) concentration (𝐶), (b) rms of vertical velocity, rms(𝑢), and (c) variance of the concentration (𝜎). The instants considered for 
the comparison are reported in the legend of panel (a). For greater clarity, only the upper part of the domain (1∕2≤ 𝑥 ≤ 1) is shown in (a).

same flow parameters (same Ra and 𝐿, as indicated in Table 3), but dif-
ferent boundary conditions, as in our case the domain is confined by two 
horizontal and impermeable walls, and is not triple-periodic. A descrip-
tion of the flow evolution for the simulation RT1 is provided in Fig. 7
(corresponding to Ra = 3.2× 104, see Table 3). In the top panels, 3D vi-
sualizations of the concentration distribution are provided for different 
time instants 𝑡, while the corresponding concentration field at the mid 
height, 𝐶(𝑥 = 1∕2,𝑦,𝑧, 𝑡), is shown in the bottom panels. The concentra-
tion fluctuations at the interface between the fluids grow as finger-like 
structures (Fig. 7b). As time progresses, the fingers extend vertically 
driven by buoyancy (Figs. 7b-i, c-i), and their horizontal characteristic 
size increases due to merging of adjacent fingers (see Figs. 7b-ii, c-ii). 
This process continues until the plumes impinge on the horizontal walls 

of the domain (Figs. 7d-ii). From now on, the driving force diminishes, 
as the available potential energy is reduced due to the local decrease 
of the concentration gradients: the system becomes progressively more 
uniform in concentration (Figs. 7e-i), nearly homogeneous in horizon-
tal direction, and vertically stably-stratified (Figs. 7f-i). From now on, 
diffusion will be the dominant mechanisms controlling the mixing of 
solute.

A quantitative comparison of present results against the numerical 
simulations of Boffetta et al. [64] is proposed in Fig. 8 for simulation 
RT3 (Ra = 1.28× 105). The evolution of the system is analyzed at differ-
ent instants, in terms of horizontally-averaged profiles of concentration 
(𝐶 , Fig. 8a), rms of vertical velocity (rms(𝑢), Fig. 8b), and variance of 
concentration (𝜎, Fig. 8c). The instants considered for the comparison 
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Fig. 6. Time-dependent evolution of the dimensionless dissolution rate 𝐹 (26)
for all simulations listed in Table 2. The flux expected during the diffusive (𝐹diff, 
(27)), constant (𝐹const, (28)) and shutdown phases (𝐹sd, (29)) are reported. Sym-
bols indicate the time-instants relative to the concentration fields of Fig. 5.

fingers can form and merge (Ra ≥ 2 × 103). The concentration fields in 
correspondence of increasing times (𝑡, reported on top of each panel) 
are shown. The flow evolves from the initial step-like, self-similar profile 
(25) driven by the growth of the diffusive layer at the top of wall. After-
wards, the perturbation of the concentration field within the boundary 
layer grows linearly, and this phase is labeled as linear growth [53]. Con-
vection is nearly absent and an analytical prediction of the flux 𝐹 is 
computed from (26) with the concentration profile given by (25), which 
gives:

𝐹diff(𝑡) =
1 √
𝜋𝑡Ra

, with 𝑡Ra < 103, (27)

where the time limit (103 in this case) is set by the amplitude of the 
initial perturbation. The evolution of the flux for all simulations consid-
ered is reported in Fig. 6, and it is initially well described by Eq. (27)
for all Ra. At a later stage finger-like structures form and interact. This 
regime is hard to model analytically as it is first characterized by a flux 
growth (Fig. 6) followed by the merging of the fingers (Fig. 5a).

When the fingers have sufficiently grown, they remain nearly con-
stant in width and their dynamics is independent of time and Ra. For 
OS6, this state is approximately achieved at 𝑡 = 3.0 (Fig. 5b), when the 
flow enters a quasi-steady state characterized by a constant flux 𝐹const. 
As shown in Fig. 6, the larger the Ra, the longer this regime will be. The 
value of flux has been observed [63,53,60,61] to be:

𝐹const ≈ 0.017, (28)
in excellent agreement with our measurements performed in the inter-
val 2 × 104 < 𝑡Ra < 15Ra and reported in Table 2. This quasi-steady 
dynamics, with the fingers continuously growing in vertical direction, is 
arrested when the flow at top boundary feels the presence of the bottom 
wall. At 𝑡 ≈ 7.0 (Fig. 5c), the fingers have already reached the bottom 
boundary, while the flux remains steady at ≈ 0.017 (see Fig. 6).

It takes a time approximately equal to 15Ra−16Ra for the upper 
fluid layer to be influenced by the increasingly higher mean concen-
tration within the domain (Fig. 5d): at this point, the average solute 
concentration in the upper wall region is increased, and it is progres-
sively harder to mix solute. The system enters the so-called shutdown 
regime, characterized by the reduction of the flux reported in Fig. 6. The 
increase of the mean concentration in the system appears in Figs. 5(e)-
(h). The solute flux in this phase has been modeled in detailed by [60] 
and [53]. These authors used two different approaches, but achieved a 
similar result (see [13] for additional details). In this work we choose 
to compare against the model proposed by [53], which predicts a value 
of flux 𝐹sd during the shutdown regime to be:

𝐹sd =
16.8 

[0.73(𝑡− 16) + 31.5)]2
with 𝑡 > 16, (29)

Table 3
Numerical details of the simulations performed in 
Rayleigh-Taylor configuration. Simulation number (in-
dicated by RT#) and Rayleigh-Darcy number (Ra) are 
reported. Note that in order to compare our findings 
against the results of [64] the domain width is fixed 
to 𝐿 = 𝐿𝑦 = 𝐿𝑧 = 1∕4, whereas the height is 𝐿𝑥 = 1. 
A uniform grid is employed in this case, with resolution 
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧. The largest simulation (RT4), in which 
Ra is doubled with respect to RT3, is performed on a 
domain with 𝐿 = 1∕8 to keep the computational cost 
affordable.
Simulation Ra 𝐿 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧

RT1 3.20 × 104 1/4 2048 × 512 × 512
RT2 6.40 × 104 1/4 4096 × 1024 × 1024
RT3 1.28 × 105 1/4 8192 × 2048 × 2048
RT4 2.56 × 105 1/8 16384 × 2048 × 2048

indicated in Fig. 6 for each Ra considered (gray lines). We observe that 
present simulations are in excellent agreement with the model predic-
tions.

In summary, we have performed numerical simulations of one-sided 
systems over a wide range of Rayleigh-Darcy numbers, namely 102 ≤
Ra ≤ 105. Simulations have been performed for very long times (𝜏 =
200), to explore in detail all the regimes involved. Our results are in 
excellent agreement with previous numerical and theoretical findings, 
and we have also explored a wider range of parameters, having doubled 
the Rayleigh-Darcy number of OS10 as compared to existing literature 
results.

4.3. Rayleigh-Taylor flow

A Rayleigh-Taylor instability is simulated, consisting of two miscible 
fluids having different density and arranged in an unstable configura-
tion, i.e., with the denser fluid layer (𝐶 = 1) lying on top of the lighter 
one (𝐶 = 0). The top and bottom boundaries are assumed to be imper-
meable to fluid and solute. The system, with indication of the boundary 
conditions, is illustrated in Fig. 7(a).

The two layers are initially separated by a flat and horizontal inter-
face located at the centerline of the domain, and the fluid is still. In 
terms of velocity and concentration fields, the initial condition reads:

𝐮(𝑥,𝑦,𝑧, 𝑡 = 0) = 0, (30)

𝐶(𝑥,𝑦,𝑧, 𝑡 = 0) =
⎧
⎪
⎨
⎪⎩

0, if 𝑥 < 1∕2
1∕2, if 𝑥 = 1∕2
1, if 𝑥 > 1∕2

. (31)

The impermeability condition is implemented as no-penetration and 
no-flux condition for the vertical velocity and the concentration fields, 
respectively:

𝑢|||𝑥=0 = 𝑢
|||𝑥=1 = 0 , 𝜕𝐶

𝜕𝑥 
||||𝑥=0

= 𝜕𝐶
𝜕𝑥 

||||𝑥=1
= 0. (32)

An exact self-similar solution of Eq. (7) for the initial system dynamics 
may be determined. Initially, there is no flow (𝐮 = 0) and using the 
boundary conditions (32) combined with the initial condition (31), the 
analytical solution reads [52]:

𝐶(𝑥,𝑦,𝑧, 𝑡 = 𝑡0) =
1
2

[
1 + erf

(
(𝑥− 1∕2)Ra
2
√
𝑡0 Ra

)]
. (33)

We initialize the concentration field as in Eq. (33) with an initial time 
𝑡 = 100∕Ra, which is the first instant considered, plus a random pertur-
bation (white noise).

The flow undergoes a transient dynamics led by the density contrast 
between the fluid layers, inducing a progressive mixing [52,51,64]. To 
verify the code we compare to the results of Boffetta et al. [64] with the 
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Fig. 7. Evolution of a Rayleigh-Taylor instability in a porous medium with Ra = 3.2 × 104 (simulation RT1 in Table 3). Top panels (i): 3D visualization of the 
concentration field. Bottom panels (ii): concentration field on the horizontal (𝑦,𝑧) plane located at the mid domain height (𝑥= 1∕2). The time instant considered is 
indicated at the bottom, and varies between 𝑡= 0 (a) and 𝑡= 20.0 (f).

Fig. 8. Quantitative comparison against Boffetta et al. [64] for simulation RT3 (Ra = 1.28×105). The evolution of the system is analyzed at different instants in terms 
of horizontally-averaged profiles of (a) concentration (𝐶), (b) rms of vertical velocity, rms(𝑢), and (c) variance of the concentration (𝜎). The instants considered for 
the comparison are reported in the legend of panel (a). For greater clarity, only the upper part of the domain (1∕2≤ 𝑥 ≤ 1) is shown in (a).

same flow parameters (same Ra and 𝐿, as indicated in Table 3), but dif-
ferent boundary conditions, as in our case the domain is confined by two 
horizontal and impermeable walls, and is not triple-periodic. A descrip-
tion of the flow evolution for the simulation RT1 is provided in Fig. 7
(corresponding to Ra = 3.2× 104, see Table 3). In the top panels, 3D vi-
sualizations of the concentration distribution are provided for different 
time instants 𝑡, while the corresponding concentration field at the mid 
height, 𝐶(𝑥 = 1∕2,𝑦,𝑧, 𝑡), is shown in the bottom panels. The concentra-
tion fluctuations at the interface between the fluids grow as finger-like 
structures (Fig. 7b). As time progresses, the fingers extend vertically 
driven by buoyancy (Figs. 7b-i, c-i), and their horizontal characteristic 
size increases due to merging of adjacent fingers (see Figs. 7b-ii, c-ii). 
This process continues until the plumes impinge on the horizontal walls 

of the domain (Figs. 7d-ii). From now on, the driving force diminishes, 
as the available potential energy is reduced due to the local decrease 
of the concentration gradients: the system becomes progressively more 
uniform in concentration (Figs. 7e-i), nearly homogeneous in horizon-
tal direction, and vertically stably-stratified (Figs. 7f-i). From now on, 
diffusion will be the dominant mechanisms controlling the mixing of 
solute.

A quantitative comparison of present results against the numerical 
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same flow parameters (same Ra and 𝐿, as indicated in Table 3), but dif-
ferent boundary conditions, as in our case the domain is confined by two 
horizontal and impermeable walls, and is not triple-periodic. A descrip-
tion of the flow evolution for the simulation RT1 is provided in Fig. 7
(corresponding to Ra = 3.2× 104, see Table 3). In the top panels, 3D vi-
sualizations of the concentration distribution are provided for different 
time instants 𝑡, while the corresponding concentration field at the mid 
height, 𝐶(𝑥 = 1∕2,𝑦,𝑧, 𝑡), is shown in the bottom panels. The concentra-
tion fluctuations at the interface between the fluids grow as finger-like 
structures (Fig. 7b). As time progresses, the fingers extend vertically 
driven by buoyancy (Figs. 7b-i, c-i), and their horizontal characteristic 
size increases due to merging of adjacent fingers (see Figs. 7b-ii, c-ii). 
This process continues until the plumes impinge on the horizontal walls 
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4) Future developments
https://envirosouth.com/services/soil-groundwater-remediation/

AFID-Darcy I INTRODUCTION

r · u = 0, (10)

u = � (rp+ Ci) , (11)

where

Ra =
g�⇢⇤KL⇤

z

�Dmµ
=

U⇤L⇤
z

�Dm
(12)

is the Rayleigh-Darcy number. Finally, the dimensionless form of the dispersion tensor D
reads:

D = I+
1

�


(r � 1)

uuT

|u| + |u|I
�

(13)

where � = Dm/Dt with Dm the molecular di↵usion coe�cient, Dt transverse dispersion
coe�cient, and r = Dl/Dt is the dispersivity ratio. The flow is completely defined by four
dimensionless parameters: Ra, L = L⇤

x/`
⇤, � and r. Note that in this case the govern-

ing parameter Ra does not appear explicitly in the equations, but it corresponds to the
dimensionless domain height, sinceRa = L⇤

z/`
⇤ (see also Fig. 1).

2. Numerical solution of the equations

With the present initial condition, it is not possible to do an accurate grid independence
tests, as the dynamics is strongly conditioned by the perturbation generated on each grid.
We chose the resolution such thatRa = 104 has 1024 nodes in each direction with the domain
aspect ratio is 1. This is overesolved, considering the validation done against the results of
Bo↵etta et al. [16] in [17] (Ra = 1.28⇥ 105, discretized with 8192 points, corresponding to a
resolution in di↵usive units of �x = �y = �z = 15.625). In our simulations the resolution
in di↵usive units is constant and equal to �x = �y = �z = 10, and the simulations are
2D, therefore the resolution requirements would be even lower than in the 3D case since
the Nusselt number is lower. The minimum number of grid points in vertical direction is
128, making the grid even more over-resolved in the low-Ra case. As a result, the resolution
is fixed in horizontal direction (10240) and variable in vertical direction, with a number of
points equal to 1024 ⇥Ra /104. The initial time considered is t0 = 50 and the simulations
is run at constant time step �t = min(1,Ra /103) for t  3. The method used to solve the
flow is implicit [17].
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AFID-Darcy I INTRODUCTION

D⇤ reads:

D⇤ = DmI+ (↵l � ↵t)
u⇤(u⇤)T

|u⇤| + ↵t|u⇤|I (3)

where I is the identity matrix, Dm the molecular di↵usion coe�cient, ↵l the longitudinal
dispersivity and ↵l the transverse dispersivity. Note that this tensor reduces to the di↵usive
case when u⇤↵l/Dm ⌧ 1.

We consider the fluid density, ⇢⇤, to be a linear function of the concentration:

⇢⇤(C⇤) = ⇢⇤(C⇤
min) +�⇢⇤

C⇤ � C⇤
min

C⇤
max � C⇤

min

, (4)

with �⇢⇤ = ⇢⇤(C⇤
max) � ⇢⇤(C⇤

min). Assuming the validity of the Boussinesq approximation
[15], the flow field is fully described by the continuity and the Darcy equations,

r⇤ · u⇤ = 0 , u⇤ = �K

µ
(r⇤P ⇤ + ⇢⇤gi) , (5)

with µ the fluid viscosity (constant), P ⇤ the pressure and i the vertical unit vector. The
walls are impermeable to the fluid

u⇤ · n = 0 )
(
w⇤(z⇤ = 0) = 0

w⇤(z⇤ = L⇤
z) = 0

(6)

with n the unit vector perpendicular to the boundary, and slip at the walls is possible. At the
upper and lower walls, no flux (@w⇤C⇤ = 0) boundary conditions are considered. Periodicity
is forced in the wall-parallel directions.

1. Dimensionless equations

In the system considered, the domain height is relevant only after the fingers reach the
walls. Therefore, it may be convenient to make the equations dimensionless with respect
to flow units that are independent from the domain geometry. In particular, as proposed
by Slim [9], one can use the reference length scale as `⇤ = Dm/U⇤. A natural velocity
scale relevant to the convective system considered is the buoyancy velocity, U⇤ = g�⇢⇤K/µ.
Using these scales and the following set of dimensionless variables:

C =
C⇤ � C⇤

min

C⇤
max � C⇤

min

, x =
x⇤

`⇤
, u =

u⇤

U⇤ , (7)

t =
t⇤

�`⇤/U⇤ , p =
p⇤

�⇢⇤g`⇤
, (8)

and introducing the reduced pressure p⇤ = P ⇤ + ⇢⇤(Cmin)gz⇤, we obtain the dimensionless
form of the governing Eqs. (2),(5):

@C

@t
+ u ·rC = r · (DrC) (9)

6

Include the effects of mechanical dispersion (anisotropic 
Fickian dispersion formulation)
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5) Conclusions

• We developed a code for numerical simulations of
buoyancy-driven Darcy flows: AFiD-Darcy

• Massively parallelized and designed for extreme Ra
• Versatile and suitable also at low Ra due to the

implicit version
• Open source:
 Computer Physics Communications Library: 
       https://doi.org/10.17632/xhx3gzpj6n.1
 GitHub
       https://github.com/depaolimarco/AFiD-Darcy

Documentation still in development, please 
contact me for any question:

m.depaoli@utwente.nl ; 
marco.de.paoli@tuwien.ac.at


