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A) Convection in porous media
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Sea ice formation

ice

mushy
layer

Middleton, C. A., C. Thomas, A. de Wit, And 0 0.08
J.-L. Tison. “Visualizing Brine Channel Sl

Development and Convective Processes during _ _
Artificial Sea-Ice Growth Using Schlieren Optical Wells AJ, Hitchen JR, Parkinson JRG. 2019 Mushy-

Methods.” Journal of Glaciology 62, no. 231 layer growth and convection, with application to sea

(2016): 1-17. https://doi.org/10.1017/jog.2015.1.  ice. Phil. Trans. R. Soc. A 377: 20180165.
http://dx.doi.org/10.1098 /rsta.2018.0165

https: //www.youtube.com/watch?v=RZwinRfImbo&t=58s&ab channel=YOUTUBEPEDIA

Other applications

Craig T. Simmons, Thomas R.
Fenstemaker, John M. Sharp,
Variable-density groundwater flow
and solute transport in
heterogeneous porous media:
approaches, resolutions and future
challenges, Journal of Contaminant
Hydrology, 2001,
https://doi.org/10.1016/S0169-
7722(01)00160-7

De Paoli, M. Convective mixing in
porous media: a review of Darcy,
pore-scale and Hele-Shaw studies.
FEur. Phys. J. E 46, 129 (2023).
https://doi.org/10.1140/epje/s1018
9-023-00390-8
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CCS can work as unique climate
change mitigation technology for
at least 100 years

M.L. Szulczewski, C.W. MacMinn, H.J. Herzog, & R.
Juanes, Lifetime of carbon capture and storage as a
climate-change mitigation technology, Proc. Natl. Acad.
Sci. U.S.A. 109 (14) 5185-5189,
https://doi.org/10.1073/pnas.1115347109 (2012)
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M. De Paoli; Influence of reservoir properties on

¢y  Spreading of Spreading of - the dynamics of a migrating current of carbon
buoyant current buoyant current

Supercritical CO,

dioxide. Physics of Fluids 1 January 2021; 33 (1):
016602. https://doi.org/10.1063/5.0031632

l Sinking of COo-

rich solution

NOT TO SCALE

Impermeable layer

CO3 concentration

T T T
brine liquid

CO2
A CO3 injection point

MacMinn, C. W., and R. Juanes (2013), Buoyant
currents arrested by convective dissolution, Geophys.
Res. Lett., 40, 2017-2022, doi:10.1002/grl.50473.

75x realtime
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Focus on the Darcy scale:
Darcy scale

* Flow equation valid for a
Reference Elementary
Volume (REV)

« Size of flow structures >
size of the pores

* Importance of dissipative
mechanisms dominate over
driving mechanisms
quantified by Rayleigh-
Darcy number, Ra

pore scale

M. De Paoli; Influence of reservoir
properties on the dynamics of a migrating
current of carbon dioxide. Physics of Fluids
1 January 2021; 33 (1): 016602.
https://doi.org/10.1063/5.0031632
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How are heat and mass transported
in buoyancy-driven porous media
flows?
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D) State of the art: examples
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Heterogeneous media

- Cusini, M., van Kruijsdijk, C., & Hajibeygi, H. (2016). Algebraic
dynamic multilevel (ADM) method for fully implicit simulations of
multiphase flow in porous media. Journal of Computational
Physics, 814, 60-79. http://dx.doi.org/10.1016/.jcp.2016.03.007

- Wang, Y., Vuik, C., & Hajibeygi, H. (2022). Analysis of
hydrodynamic trapping interactions during full-cycle injection and

migration of CO2 in deep saline aquifers. Advances in Water
Resources, 159, 104073.

https://doi.org/10.1016/j.advwatres.2021.104073

Geochemistry

- H. Erfani, M. Babaei, V. Niasar, Dynamics of CO2 density-driven
flow in carbonate aquifers: effects of dispersion and geochemistry,
Water Resour. Res. 57 (4) (2021) e2020WR027829.
https://doi.org/10.1029/2020WR027829

- T. Koch, D. Glaser, K. Weishaupt, S. Ackermann, M. Beck, B.
Becker, S. Burbulla, H. Class, E. Coltman, S. Emmert, et al., Dumux
3—an open-source simulator for solving flow and transport problems in
porous media with a focus on model coupling, Comput. Math. Appl. 81
(2021) 423-443. https://doi.org/10.1016/j.camwa.2020.02.012
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What is missing: highly parallel open-source
code for buoyancy-driven wall-bounded flows
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AFiD — Advanced Finite Difference
solver for wall-bounded flows
Physics of Fluids
Geometry Language €& Fluid and flow models
: . libraries
Cartesian Cyhn}cal Phase-change, surface
. FORTRAN 90 tension, particles
FFTW3 transport,...
HDEF5
Parallelization
MPI
OpenMP
CUDA

E.P. Van Der Poel, R. Ostilla-Mo6nico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent
wall-bounded flows. Comput. Fluids, 116 (2015), pp. 10-16. https://doi.org/10.1016/j.compfluid.2015.04.007

Yang, Rui, Christopher J. Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. “Morphology Evolution of a Melting Solid
Layer above Its Melt Heated from Below.” Journal of Fluid Mechanics 956 (2023): A23. https://doi.org/10.1017/jfm.2023.15.
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- velocity: no penetration, free-slip
- scalar: Dirichlet or Neumann
x*

Z*

x*

X=— = Equations obtained scaling
*k %k %k
Lx ¢Lx/ U the flow variables with respect
U* =gAp*c/u to convective scales
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d0C 1
ot Ra Advection-diffusion equation
v-u=0, Continuity

Darcy law + linear dependence of
density and concentration

u=-—(Vp+ (i),

% %k %k %
_ gApTK Lx _ U Lx Governing parameter

Ra = oD ¢—D Rayleigh-Darcy number

De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows

15 |



C) Numerical details

Physics of Fluids

COMPUTER PHYSICS
COMMUNICATIONS

Discretization Finite-differences, 2-nd order centered
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Discretization

Grid

Finite-differences, 2-nd order centered

Staggered (energy conserving for At = 0)

Variables arrangement on the grid

////I\\
/// ‘ \\\
// | N
N G, gl RN
N N
| ~ g l
| w‘\ - v |
l ' ® l
| T & ,
l l
ve b
< ~ |
~
. @ S
Z ~
Y

De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows

17|
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Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for At = 0)
Spacing Uniform in periodic direction, non-uniform or

uniform in vertical direction
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C) Numerical details
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Discretization Finite-differences, 2-nd order centered
Grid Staggered (energy conserving for At = 0)
Spacing Uniform in periodic direction, non-uniform or
uniform in vertical direction
Parallelization MPI, 2D pencil-like domain decomposition
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2DECOMP library

E.P. Van Der Poel, R. Ostilla-Mo6nico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly
turbulent wall-bounded flows. Comput. Fluids, 116 (2015), pp. 10-16. https://doi.org/10.1016/j.compfluid.2015.04.007
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1 1 COMPUTER PHYSICS
C) Numerical details B e

Discretization Finite-differences, 2-nd order centered
. _ oC 1

Grid Staggered (energy conserving for At = 0) o7 +V-(uC - Ra vC)=0
Spacing Uniform in periodic direction, non-uniform or V.u=0

uniform in vertical direction u=y
Parallelization MPI, 2D pencil-like domain decomposition u=—(Vp+ Ci),
Time advancement 3rd-order Runge-Kutta (RK3) +

Crank-Nicolson

' =-¢p — /T 1) preliminary non-solenoidal velocity field

DGy = Du*

2) pressure correction field ¢ is determined
solving the Poisson equation

3) updated velocity and pressure fields, such that the

pPH=p +y updated velocity field is solenoidal by construction.
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Discretization Finite-differences, 2-nd order centered oC 1
. . 24V (uC-—-vC) =0
Grid Staggered (energy conserving for At = 0) ot Ra
Spacing Un.lfform in perl.odllcd(.hrec’.clon, non-uniform or Also at large Rayleigh-Darcy
uniform 1n vertical direction numbers, when the problem is
Parallelization MPI, 2D pencil-like domain decomposition transient and the system saturates
Time advancement 3rd-order Runge-Kutta (RK3) + in solute, the driving force may

Crank-Nicolson reduce considerably pointing to

the need of an implicit solver.
Discretization diffusive term  Fully-implicit or semi-implicit formulations P

time

»
»

il

| B

— : - E— |
1 1/2 0
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Discretization Finite-differences, 2-nd order centered oC 1

. . 24V (uC-—-vC)=0
Grid Staggered (energy conserving for At = 0) ot Ra
Spacing Uniform in periodic direction, non-uniform or Also at large Rayleigh-Darcy numbers

system saturates in solute, the driving

force may reduce considerably pointin
Time advancement 3rd-order Runge-Kutta (RK3) + to the need of an implicit solver.
Crank-Nicolson

Parallelization MPI, 2D pencil-like domain decomposition

Discretization diffusive term  Fully-implicit or semi-implicit formulations

Scheme properties

High driving (high values of Ra): only the wall-normal component of V2C is Small At
solved implicitly, avoiding communications of non-local information for the Few communications

computation of the implicit derivatives in the wall-parallel directions.

Large At
All the components of the scalar diffusive term are treated with a Crank— More communications
Nicolson scheme. Computationally more intensive
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Case 11

Case 111

Rayleigh-Bénard One-sided Rayleigh-Taylor
C=1 C=1 9.C =0

C=0 9.C =0 9.C =0

We double Ra with respect to current state-of-art simulations
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Case I — Rayleigh-Bénard convection
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(a) RB1 - Ra = 1,750 (b) RB10 - Ra = 100,000

C=1
1 , / | o
T ﬂ» %‘ { ’;‘ “\ “ (l‘\ \ 4 !
\ ; ] "Nt
‘ ) ’

| R /| )

y : / " ‘\'llA 1y
O — L— r ‘ ' O ::n -J{ W )}' YR N . / . L/8 -
0 0 | >~ Cc=0 L 0 0.9 08 ¥ 0
HE HE T HE
C C C
o DPn3
Nu~Ra = N XNyxNz ~ Ra Ra L N.XN,xN,

At ~ Ra™1
8.00 x 10* 1.0 2048 x 6144 x 1

1.00 x 10° 1.0 2560 x 7680 x 1
1.50 x 10° 1.0 4096 x 12288 x 1

Computational costs ~ Ra? (2D) or Ra* (3D)
2.00 x 10° 1.0  5120x 15360 x 1

L/8
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Case I — Rayleigh-Bénard convection COMPUTER PHYSICS
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Physics of Fluids e
0.009 : — —— — : Zhu, Xiaojue, Yifeng Fu, and Marco De Paoli. “Transport
A (2D) Hewitt et al. (2012) Scaling i.n Porous Media Convection.” Journal of Fluid
O B D (2D) Wen et al. (2015) Mechanics 991 (2024): A4.
v (2D) De Paoli et al. (2016) https://doi.org/10.1017/jfm.2024.528.
<l (2D) Pirozzoli et al. (2021) ' L L ' L B A B P
- @ this work _ - = /(Nu—1)Ra
0-008 ‘a 10*H @ this work ~ & -
Qg A ¥ .,. .
~— 4 i 7 4 i
3 I PS ]
= I «® ]
0.007 - - - »“Pe/+\/(Nu—1)Ra |
L 10° - o 102} :
I hd i
- s 1.00 + @0 00 -
0.006 | Lol | Lol | - @ 00} oo o @ ©oo0 M
103 10* 10° i -7 0.98 | I
Ra - ‘/' e
Hewitt, D. R., Neufeld, J. A., & Lister, J. R. (2012). Physical Review Letters, 108(22), 102 R . 10:? N 104 | 10?
224503. https://doi.org/10.1103/PhysRevLett.108.224503 103 104 10°
Wen, Baole, Lindsey T. Corson, and Gregory P. Chini, Journal of Fluid Mechanics 772
(2015): 197—-224. https://doi.org/10.1017/jfm.2015.205 Ra

De Paoli, M. Zonta, F. and Soldati, A., Physics of Fluids 1 May 2016; 28 (5): 056601.
https://doi.org/10.1063/1.4947425

Pirozzoli, Sergio, Marco De Paoli, Francesco Zonta, and Alfredo Soldati. Journal of
Fluid Mechanics 911 (2021): R4. https://doi.org/10.1017/jfm.2020.1178
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Case II — one-sided convection COMPUTER PHYSICS
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. (a) t=1.0 _—C =v1 (e) t =30.0
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Case II — one-sided convection
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0-04 L | ! L L ! L L ! L L ! L L
e Fyip = OS1 0S4 0S7 —— 0S10
— — Fronst 0S2 0S5 0S8
0.03 | F,y ——08S3 0S6 —— 0S9
, 0.02
0.01
O+
102

t Ra

See also for the purpose of verification: Slim, Anja C. “Solutal-Convection Regimes in a Two-Dimensional
Porous Medium.” Journal of Fluid Mechanics 741 (2014): 461-91. https:

doi.org/10.1017/ifm.2013.673.
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Case II — one-sided convection COMPUTER PHYSICS
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Implicit solver: each time step is

) , Implicit solver allows larger time steps
computationally more expensive

o @ )
h2s T T TT T R R FE R T ] N T T T T T T ] T T LS B |
o : ) v semi-implicit |3 . | v semi-implicit 058
+ [ v. @ o implicit 2.10* | o implicit o4 3
\V4 . g e ]
089 10 : g] — — ideal | '8 _
s v 510 :
2, Vg < 0S5
~ 10°¢ TLise g + ' v
S v o - L 10°) H :
= it e £ [ 0S2
glo—l L ; A RN ; e ; 101 9 i . S
10? 10° 10* 102 103 10*
number of MPI processes Ra
Larger wall-clock per time/step Smaller time to solution
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Case III — Rayleigh-Taylor flow
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1/2

()

(f-ii)

Ra L N,XN,XN,
3.20x 10 1/4 2048 x512x512
6.40 x 10* 1/4 4096 x 1024 x 1024
1.28 x 10° 1/4 8192 %2048 x 2048
2.56 x 10° 1/8 16384 x 2048 x 2048

t=20.0

* Up to 70 Billion grid points

* Up to 64k MPI processes

* Essential to optimize
communications

De Paoli Marco, AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows
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(a)
1 | | j
o t=0.2 (Bofletta et al., 2020) &
o t=0.4 (Boffetta et al., 2020)
o t=0.6 (Boffetta et al., 2020) §
0.9 o t=038 (Boffetta et al., 2020) - . .
e ¢ =10 (Boffetta et al., 2020) §
o t=1.2 (Boffetta et al., 2020) §
t = 0.2 (this work) i
0.8 t = 0.4 (this work) N N N
t = 0.6 (this work)
8 t = 0.8 (this work) 8
——t = 1.0 (this work)
0.7F —1=12 (this work) . N N
0.6 - 7 -
05 0le | | | |
0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
C rms(u) o

Verified against: Boffetta, G., Borgnino, M., & Musacchio, S. (2020). Scaling of Rayleigh-Taylor mixing
in porous media. Physical Review Fluids, 5(6), 062501. https://doi.org/10.1103/PhysRevFluids.5.062501
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https://envirosouth.com /services/soil-groundwater-remediation /

Include the effects of mechanical dispersion (anisotropic
Fickian dispersion formulation)
oC 1 uu’

- tu-VC =V (DVC) D=T++ (r—l)WHU\I

De Paoli, M., Howland, C.J., Verzicco, R., & Lohse, D. J. Fluid
Mechanics 987 (2024): Al. https://doi.org/10.1017/jfm.2024.328.
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* We developed a code for numerical simulations of
buoyancy-driven Darcy flows: AFiD-Darcy
* Massively parallelized and designed for extreme Ra
* Versatile and suitable also at low Ra due to the
implicit version
* Open source:
Computer Physics Communications Library:
https://doi.org/10.17632 /xhx3gzpj6n.1
GitHub
https://github.com/depaolimarco/AFiD-Darcy

Ok 0
B
i71 @

op 1‘|:"'.|.

'-'.hl Documentation still in development, please

contact me for any question:
m.depaoliQutwente.nl ;

marco.de.paoli@tuwien.ac.at
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