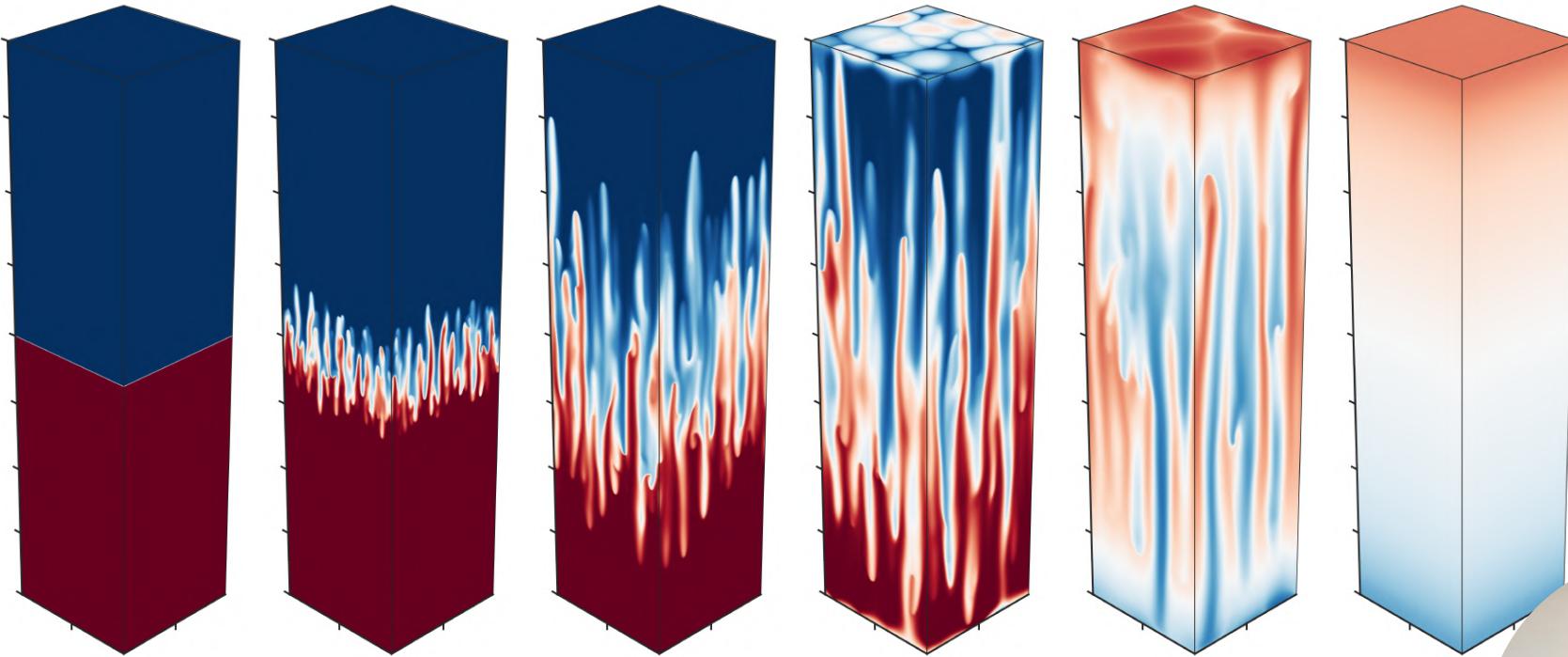


# AFiD-Darcy: A finite difference solver for numerical simulations of convective porous media flows



M. De Paoli<sup>1,2</sup>, Guru Sreevanshu Yerragolam<sup>1</sup>, Detlef Lohse<sup>1</sup> & Roberto Verzicco<sup>1,3,4</sup>

<sup>1</sup>Physics of Fluids Group, University of Twente, Enschede (The Netherlands)

<sup>2</sup>Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna (Austria)

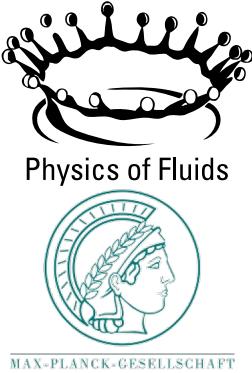
<sup>3</sup>Dipartimento di Ingegneria Industriale, University of Rome “Tor Vergata”, Rome (Italy)

<sup>4</sup>Gran Sasso Science Institute, L’Aquila, (Italy)



De Paoli, M., Yerragolam, G. S., Lohse, D., & Verzicco, R. (2025). *Computer Physics Communications*, 109579. <https://doi.org/10.1016/j.cpc.2025.109579>

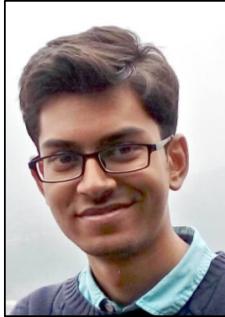
# Acknowledgements



D. Lohse



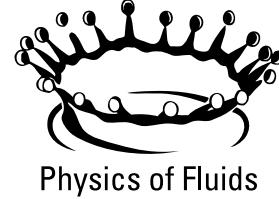
G. S. Yerragolam



R. Verzicco



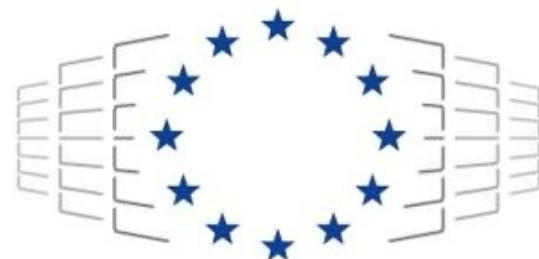
# UNIVERSITY OF TWENTE.



This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement MEDIA No. 101062123.



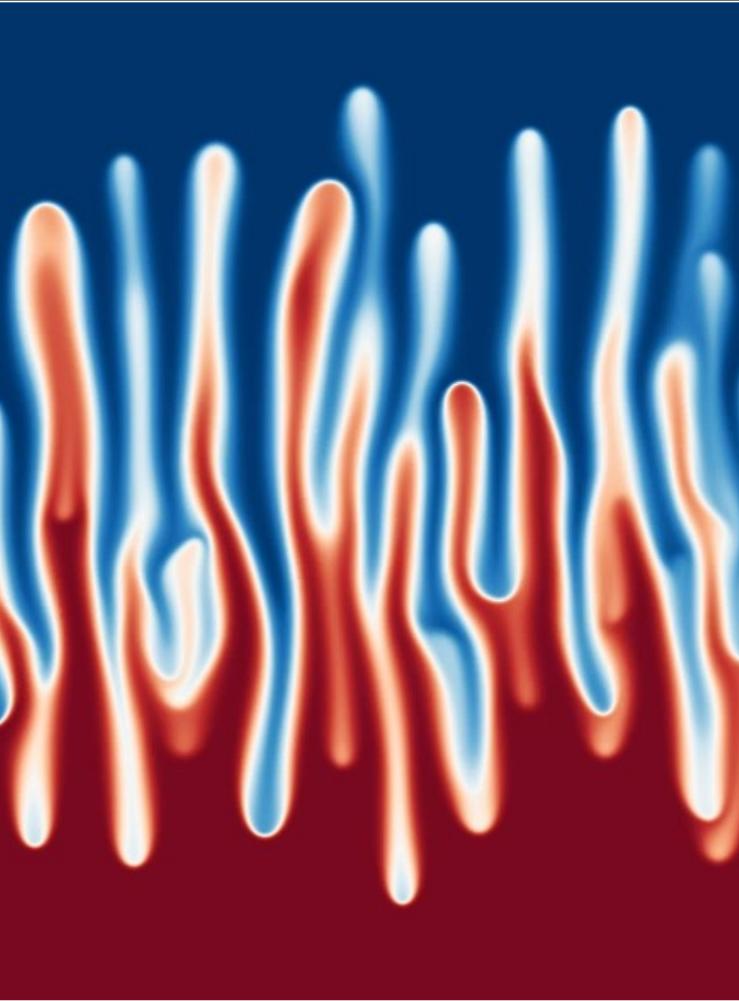
**Funded by  
the European Union**



**EuroHPC  
Joint Undertaking**

We acknowledge the EuroHPC Joint Undertaking for awarding the project EHPC-REG-2023R03-178 to access the EuroHPC supercomputer Discoverer hosted by Sofia Tech Park (Bulgaria), and the project EHPC-BEN-2024B08-060 to access the EuroHPC supercomputer MareNostrum5 hosted the Barcelona Supercomputing Center (Spain).

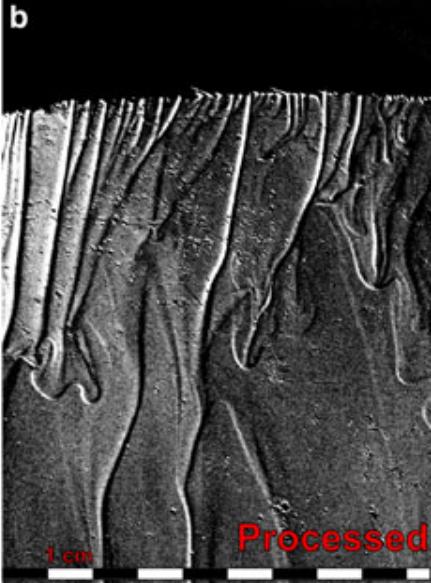
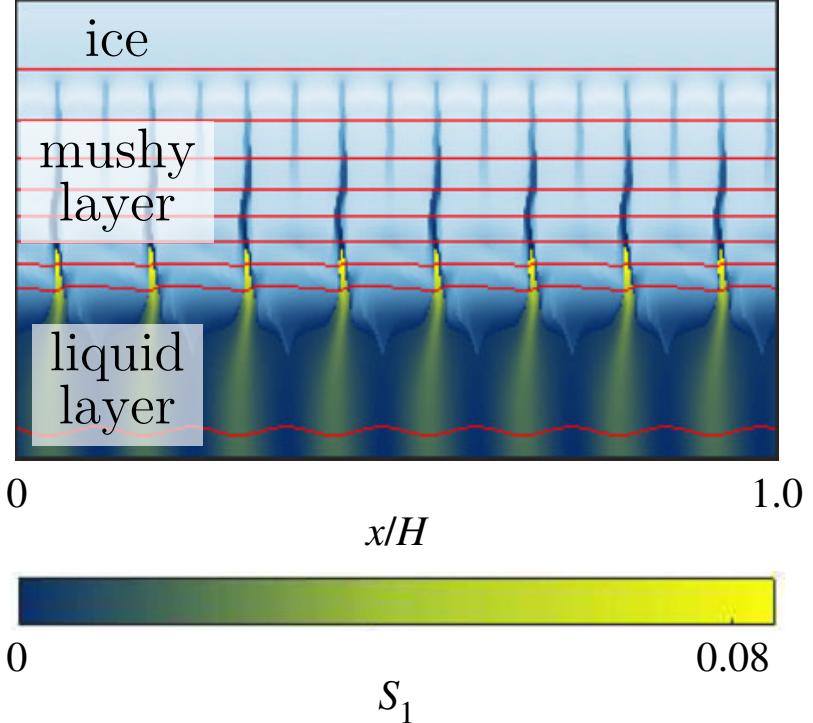
1. Motivation & background
2. Methodology
3. Verification
4. Future developments
5. Conclusions



# 1) Motivation & background

# A) Convection in porous media

## Sea ice formation



Wells AJ, Hitchen JR, Parkinson JRG. 2019 Mushy-layer growth and convection, with application to sea ice. *Phil. Trans. R. Soc. A* 377: 20180165.  
<http://dx.doi.org/10.1098/rsta.2018.0165>

## Other applications

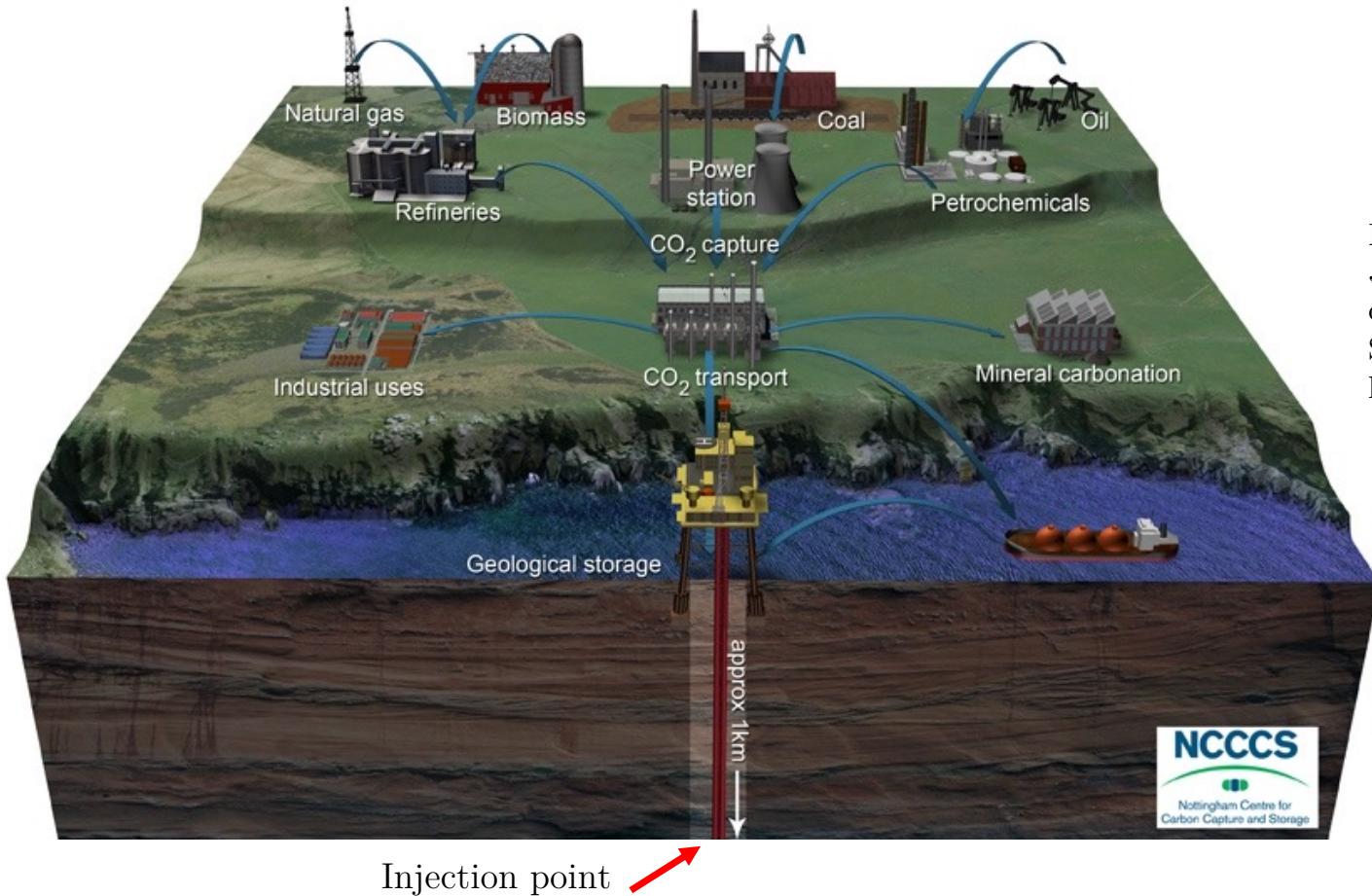
Craig T. Simmons, Thomas R. Fenstemaker, John M. Sharp, Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges, *Journal of Contaminant Hydrology*, 2001, [https://doi.org/10.1016/S0169-7722\(01\)00160-7](https://doi.org/10.1016/S0169-7722(01)00160-7)

De Paoli, M. Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies. *Eur. Phys. J. E* 46, 129 (2023). <https://doi.org/10.1140/epje/s10189-023-00390-8>

Middleton, C. A., C. Thomas, A. de Wit, And J.-L. Tison. "Visualizing Brine Channel Development and Convective Processes during Artificial Sea-Ice Growth Using Schlieren Optical Methods." *Journal of Glaciology* 62, no. 231 (2016): 1–17. <https://doi.org/10.1017/jog.2015.1>

[https://www.youtube.com/watch?v=RZwjnRfImbo&t=58s&ab\\_channel=YOUTUBEPEDIA](https://www.youtube.com/watch?v=RZwjnRfImbo&t=58s&ab_channel=YOUTUBEPEDIA)

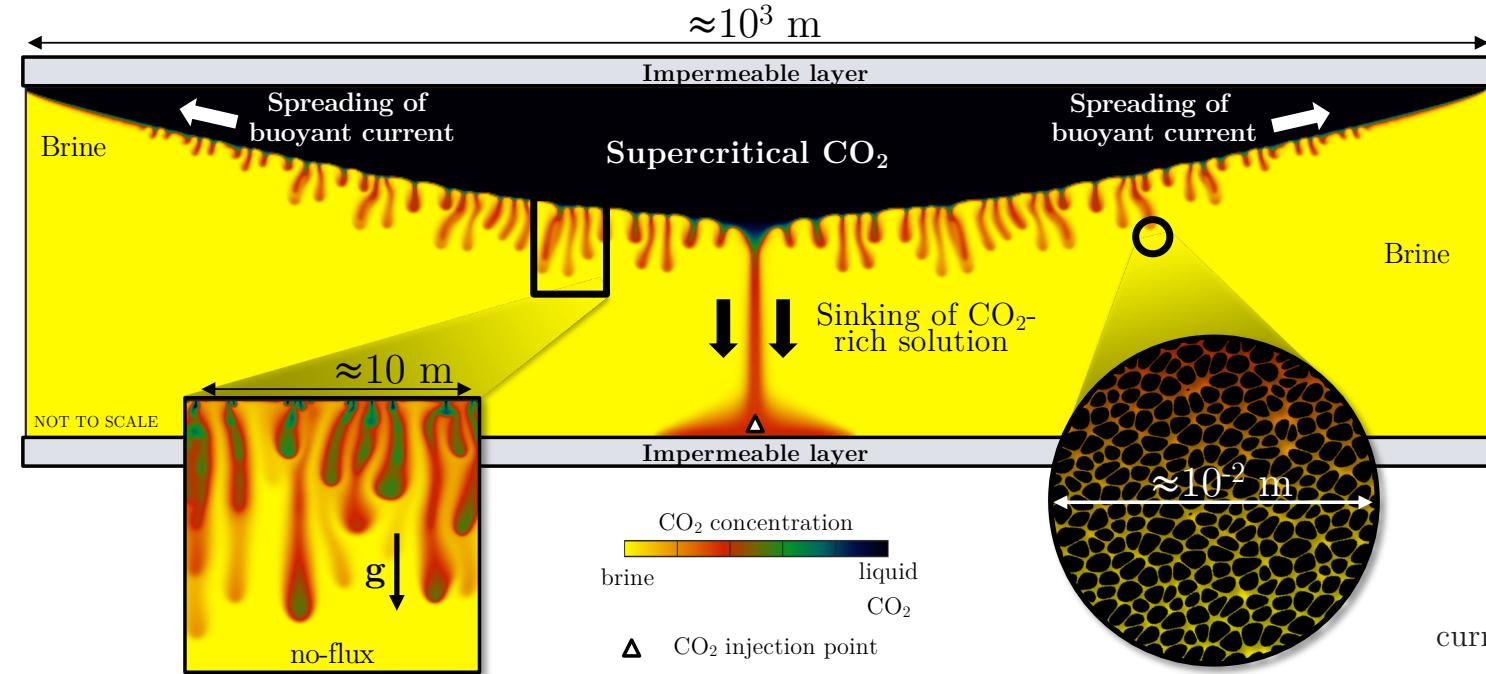
# B) Carbon Capture and Storage (CCS)



CCS can work as unique climate change mitigation technology for at least 100 years

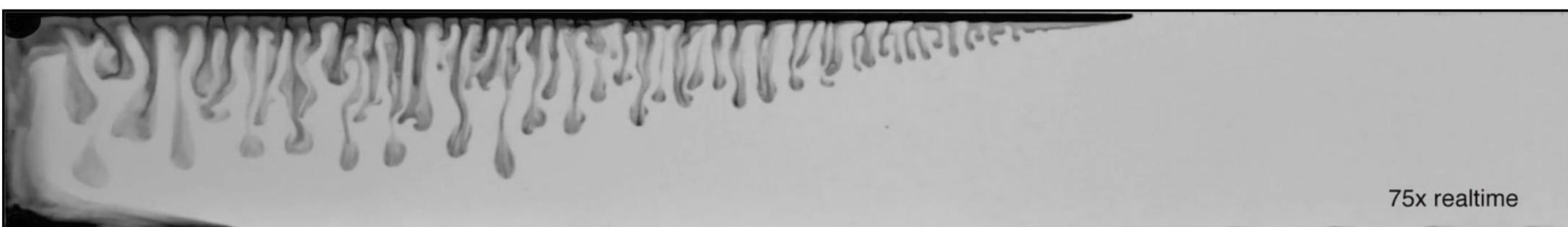
M.L. Szulczewski, C.W. MacMinn, H.J. Herzog, & R. Juanes, Lifetime of carbon capture and storage as a climate-change mitigation technology, Proc. Natl. Acad. Sci. U.S.A. 109 (14) 5185-5189, <https://doi.org/10.1073/pnas.1115347109> (2012)

## B) Carbon Capture and Storage

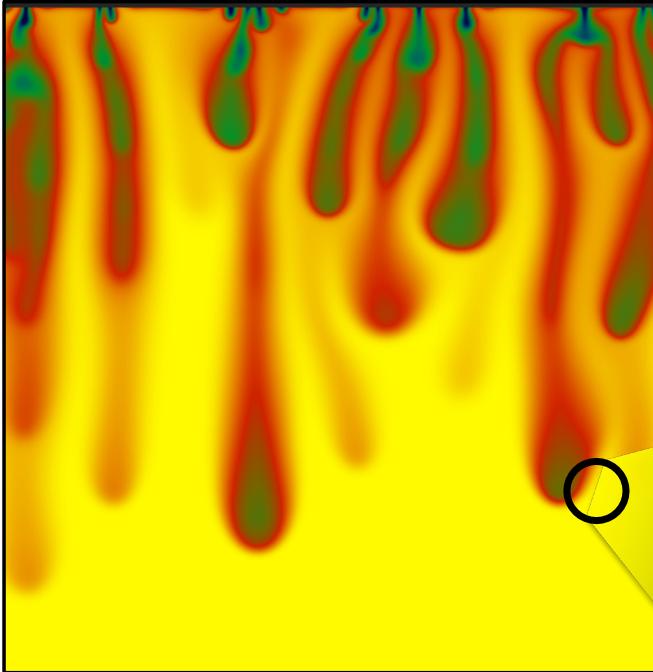


M. De Paoli; Influence of reservoir properties on the dynamics of a migrating current of carbon dioxide. *Physics of Fluids* 1 January 2021; 33 (1): 016602. <https://doi.org/10.1063/5.0031632>

MacMinn, C. W., and R. Juanes (2013), Buoyant currents arrested by convective dissolution, *Geophys. Res. Lett.*, 40, 2017–2022, doi:10.1002/grl.50473.

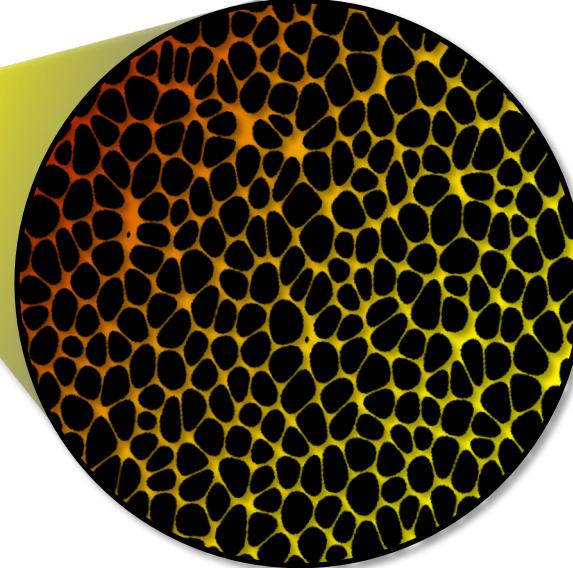


Darcy scale



M. De Paoli; Influence of reservoir properties on the dynamics of a migrating current of carbon dioxide. *Physics of Fluids* 1 January 2021; 33 (1): 016602.  
<https://doi.org/10.1063/5.0031632>

pore scale



Focus on the **Darcy scale**:

- Flow equation valid for a Reference Elementary Volume (REV)
- Size of flow structures  $>$  size of the pores
- Importance of dissipative mechanisms dominate over driving mechanisms quantified by Rayleigh-Darcy number,  $Ra$

How are heat and mass transported  
in buoyancy-driven porous media  
flows?

How are **heat** and **mass** transported  
in **buoyancy**-driven **porous** media  
flows?

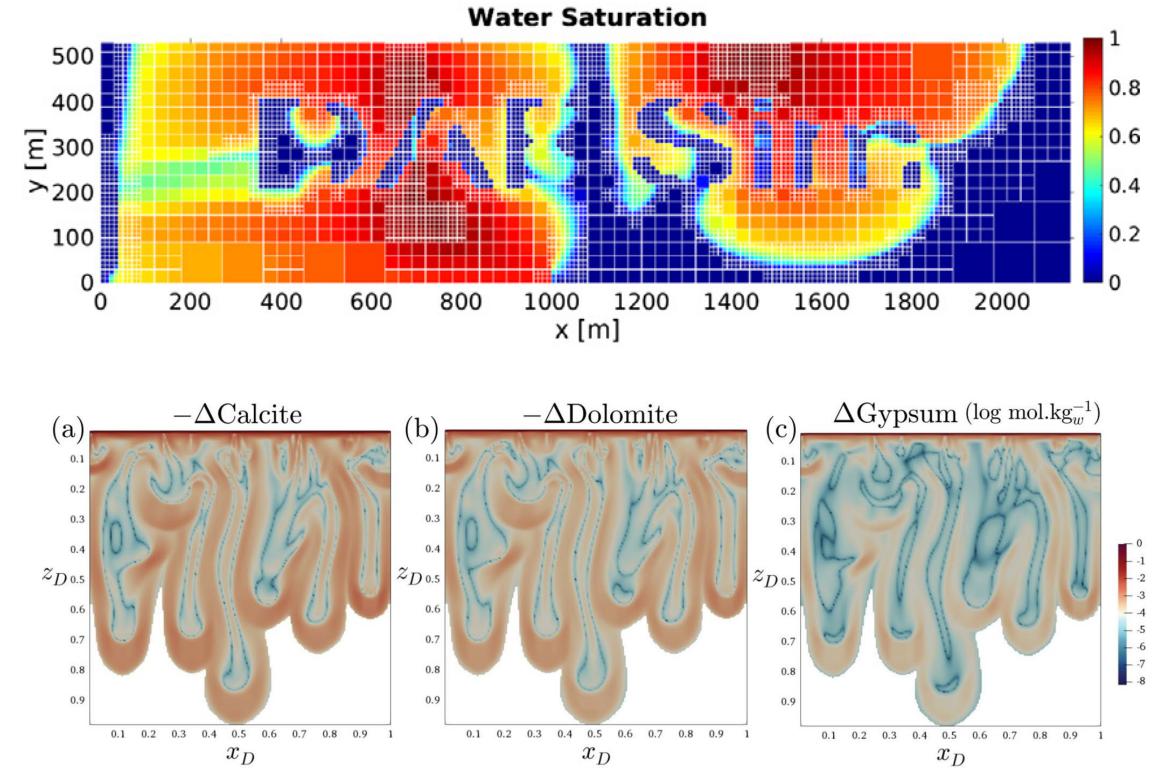
## D) State of the art: examples

### Heterogeneous media

- Cusini, M., van Kruijsdijk, C., & Hajibeygi, H. (2016). Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media. *Journal of Computational Physics*, 314, 60-79. <http://dx.doi.org/10.1016/j.jcp.2016.03.007>
- Wang, Y., Vuik, C., & Hajibeygi, H. (2022). Analysis of hydrodynamic trapping interactions during full-cycle injection and migration of CO<sub>2</sub> in deep saline aquifers. *Advances in Water Resources*, 159, 104073.  
<https://doi.org/10.1016/j.advwatres.2021.104073>

### Geochemistry

- H. Erfani, M. Babaei, V. Niasar, Dynamics of CO<sub>2</sub> density-driven flow in carbonate aquifers: effects of dispersion and geochemistry, *Water Resour. Res.* 57 (4) (2021) e2020WR027829.  
<https://doi.org/10.1029/2020WR027829>
- T. Koch, D. Gläser, K. Weishaupt, S. Ackermann, M. Beck, B. Becker, S. Burbulla, H. Class, E. Coltman, S. Emmert, et al., Dumux 3—an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling, *Comput. Math. Appl.* 81 (2021) 423–443. <https://doi.org/10.1016/j.camwa.2020.02.012>

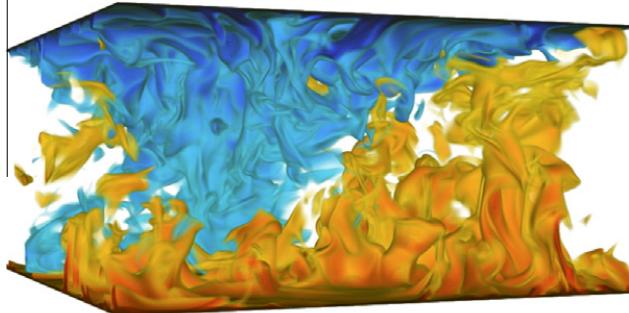


**What is missing: highly parallel open-source code for buoyancy-driven wall-bounded flows**

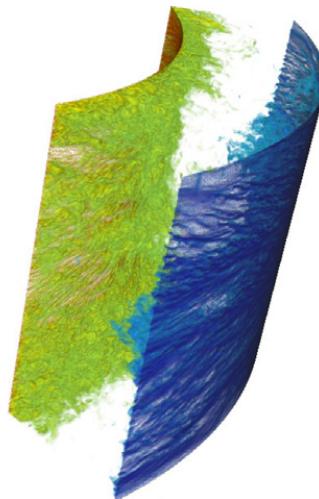
# AFiD – Advanced Finite Difference solver for wall-bounded flows

## *Geometry*

Cartesian



Cylindrical



## *Language & libraries*

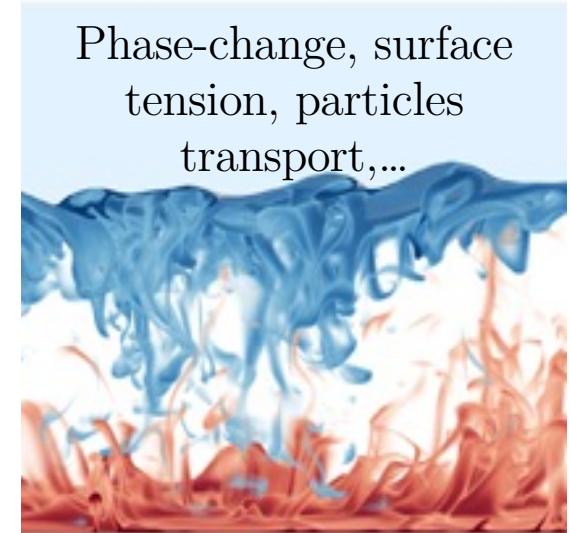
FORTRAN 90  
FFTW3  
HDF5

## *Parallelization*

MPI  
OpenMP  
CUDA

## *Fluid and flow models*

Phase-change, surface tension, particles transport,...



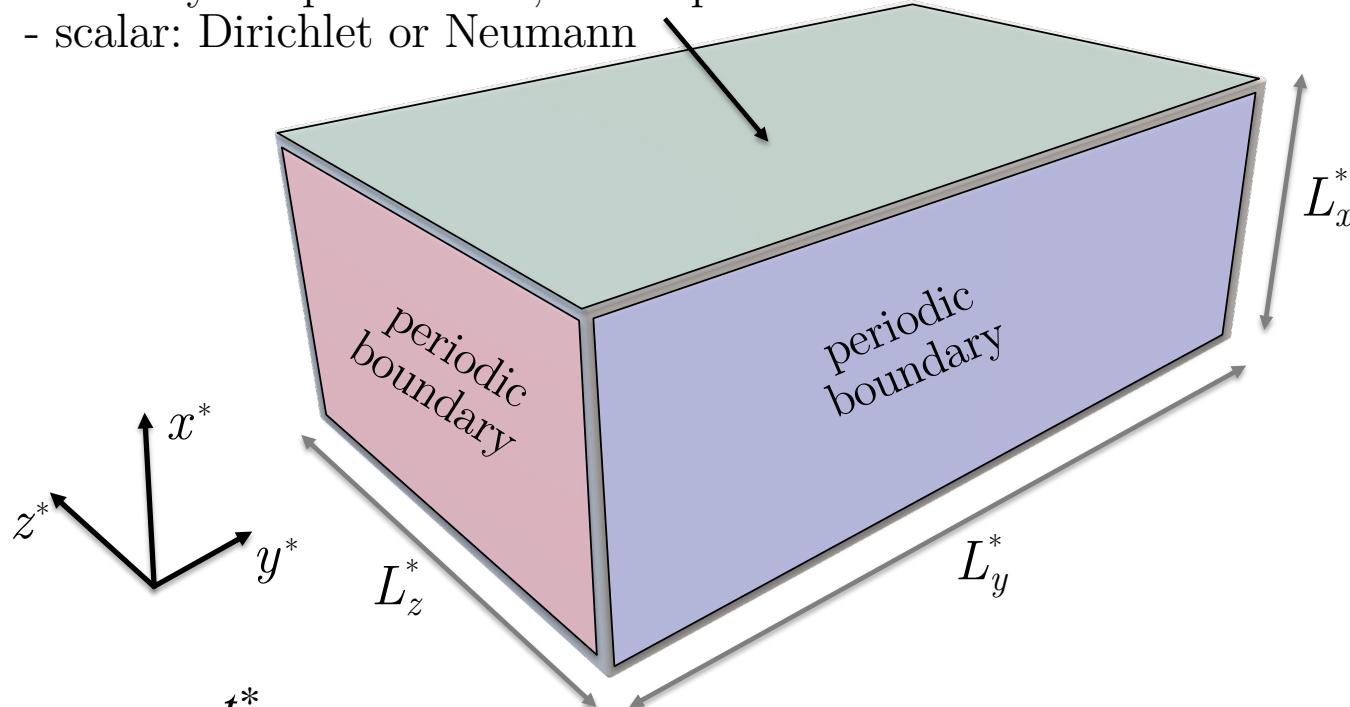
E.P. Van Der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent wall-bounded flows. *Comput. Fluids*, 116 (2015), pp. 10-16. <https://doi.org/10.1016/j.compfluid.2015.04.007>

Yang, Rui, Christopher J. Howland, Hao-Ran Liu, Roberto Verzicco, and Detlef Lohse. "Morphology Evolution of a Melting Solid Layer above Its Melt Heated from Below." *Journal of Fluid Mechanics* 956 (2023): A23. <https://doi.org/10.1017/jfm.2023.15>.

# 2) Methodology

## A) Flow configuration

- velocity: no penetration, free-slip
- scalar: Dirichlet or Neumann



$$x = \frac{x^*}{L_x^*} \quad t = \frac{t^*}{\phi L_x^* / \mathcal{U}^*}$$

$$\mathcal{U}^* = g \Delta \rho^* \kappa / \mu$$

Equations obtained scaling  
 the flow variables with respect  
 to convective scales

## B) Governing equations

$$\frac{\partial C}{\partial t} + \nabla \cdot \left( \mathbf{u}C - \frac{1}{Ra} \nabla C \right) = 0$$

Advection-diffusion equation

$$\nabla \cdot \mathbf{u} = 0,$$

Continuity

$$\mathbf{u} = -(\nabla p + C\mathbf{i}),$$

Darcy law + linear dependence of density and concentration

$$Ra = \frac{g \Delta \rho^* \kappa L_x^*}{\phi D \mu} = \frac{\mathcal{V}^* L_x^*}{\phi D}$$

Governing parameter  
Rayleigh-Darcy number

## C) Numerical details

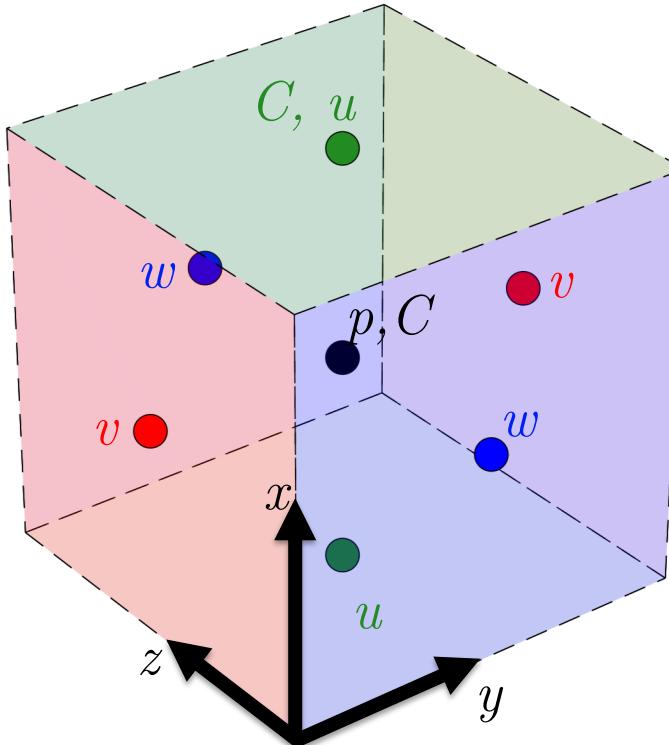
Discretization

Finite-differences, 2-nd order centered

## C) Numerical details

|                |                                                             |
|----------------|-------------------------------------------------------------|
| Discretization | Finite-differences, 2-nd order centered                     |
| Grid           | Staggered (energy conserving for $\Delta t \rightarrow 0$ ) |

Variables arrangement on the grid

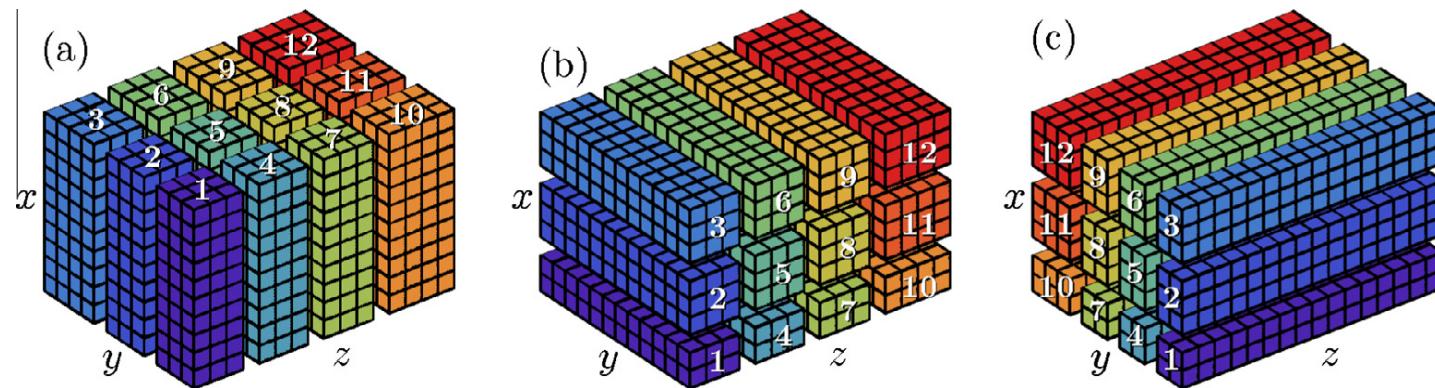


## C) Numerical details

|                |                                                                             |
|----------------|-----------------------------------------------------------------------------|
| Discretization | Finite-differences, 2-nd order centered                                     |
| Grid           | Staggered (energy conserving for $\Delta t \rightarrow 0$ )                 |
| Spacing        | Uniform in periodic direction, non-uniform or uniform in vertical direction |

## C) Numerical details

|                 |                                                                             |
|-----------------|-----------------------------------------------------------------------------|
| Discretization  | Finite-differences, 2-nd order centered                                     |
| Grid            | Staggered (energy conserving for $\Delta t \rightarrow 0$ )                 |
| Spacing         | Uniform in periodic direction, non-uniform or uniform in vertical direction |
| Parallelization | MPI, 2D pencil-like domain decomposition                                    |



2DECOMP library

E.P. Van Der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent wall-bounded flows. *Comput. Fluids*, 116 (2015), pp. 10-16. <https://doi.org/10.1016/j.compfluid.2015.04.007>

## C) Numerical details

|                  |                                                                             |
|------------------|-----------------------------------------------------------------------------|
| Discretization   | Finite-differences, 2-nd order centered                                     |
| Grid             | Staggered (energy conserving for $\Delta t \rightarrow 0$ )                 |
| Spacing          | Uniform in periodic direction, non-uniform or uniform in vertical direction |
| Parallelization  | MPI, 2D pencil-like domain decomposition                                    |
| Time advancement | 3rd-order Runge–Kutta (RK3) + Crank–Nicolson                                |

$$\frac{\partial C}{\partial t} + \nabla \cdot \left( \mathbf{u}C - \frac{1}{Ra} \nabla C \right) = 0$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\mathbf{u} = -(\nabla p + C\mathbf{i}),$$

$$\mathbf{u}^* = -\mathcal{G}p^j - C^{j+1}\mathbf{i}$$

1) preliminary non-solenoidal velocity field

$$\mathcal{D}\mathcal{G}\psi = \mathcal{D}\mathbf{u}^*$$

2) pressure correction field  $\psi$  is determined solving the Poisson equation

$$\mathbf{u}^{j+1} = \mathbf{u}^* - \mathcal{G}\psi$$

$$p^{j+1} = p^j + \psi$$

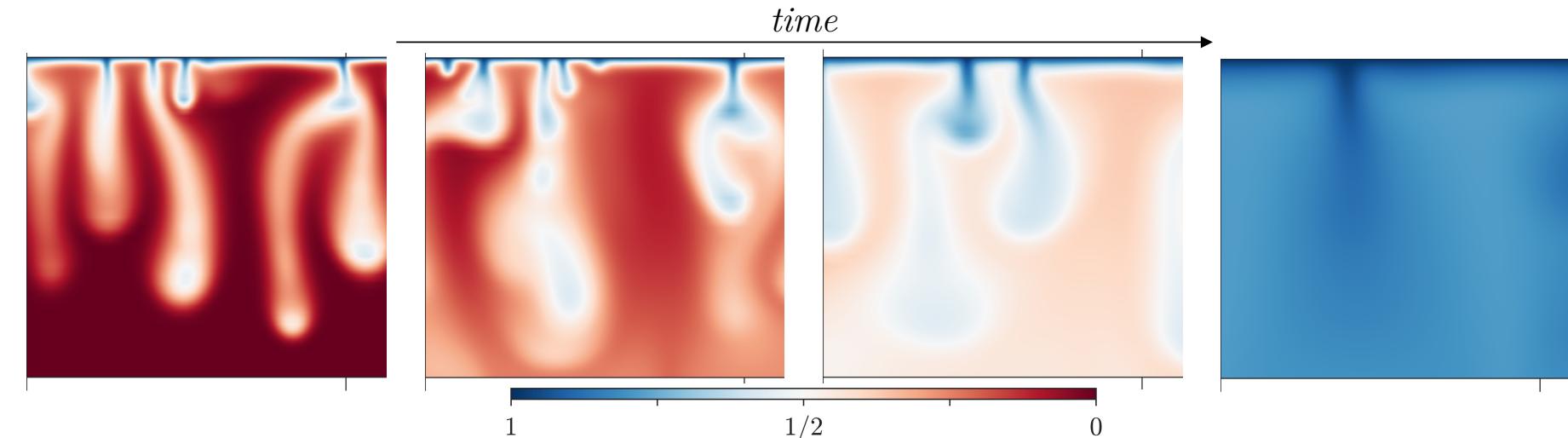
3) updated velocity and pressure fields, such that the updated velocity field is solenoidal by construction.

### C) Numerical details

|                               |                                                                             |
|-------------------------------|-----------------------------------------------------------------------------|
| Discretization                | Finite-differences, 2-nd order centered                                     |
| Grid                          | Staggered (energy conserving for $\Delta t \rightarrow 0$ )                 |
| Spacing                       | Uniform in periodic direction, non-uniform or uniform in vertical direction |
| Parallelization               | MPI, 2D pencil-like domain decomposition                                    |
| Time advancement              | 3rd-order Runge–Kutta (RK3) + Crank–Nicolson                                |
| Discretization diffusive term | Fully-implicit or semi-implicit formulations                                |

$$\frac{\partial C}{\partial t} + \nabla \cdot \left( \mathbf{u}C - \frac{1}{Ra} \nabla C \right) = 0$$

Also at large Rayleigh–Darcy numbers, when the problem is transient and the system saturates in solute, the driving force may reduce considerably pointing to the need of an **implicit solver**.



## C) Numerical details

|                               |                                                                             |
|-------------------------------|-----------------------------------------------------------------------------|
| Discretization                | Finite-differences, 2-nd order centered                                     |
| Grid                          | Staggered (energy conserving for $\Delta t \rightarrow 0$ )                 |
| Spacing                       | Uniform in periodic direction, non-uniform or uniform in vertical direction |
| Parallelization               | MPI, 2D pencil-like domain decomposition                                    |
| Time advancement              | 3rd-order Runge–Kutta (RK3) + Crank–Nicolson                                |
| Discretization diffusive term | Fully-implicit or semi-implicit formulations                                |

$$\frac{\partial C}{\partial t} + \nabla \cdot \left( \mathbf{u}C - \frac{1}{Ra} \nabla C \right) = 0$$

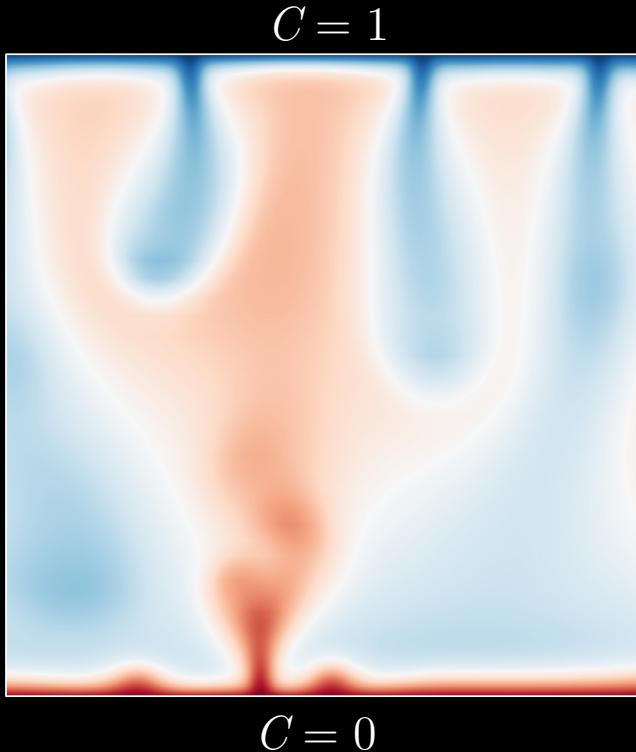
Also at large Rayleigh–Darcy numbers when the problem is transient and the system saturates in solute, the driving force may reduce considerably pointing to the need of an **implicit solver**.

| Scheme                                                                                                                                                                                                                                                            | properties                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>Semi-implicit:</b><br>High driving (high values of Ra): only the wall-normal component of $\nabla^2 C$ is solved implicitly, avoiding communications of non-local information for the computation of the implicit derivatives in the wall-parallel directions. | Small $\Delta t$<br>Few communications                                    |
| <b>Fully implicit:</b><br>All the components of the scalar diffusive term are treated with a Crank–Nicolson scheme.                                                                                                                                               | Large $\Delta t$<br>More communications<br>Computationally more intensive |

# 3) Verification

### 3) Verification

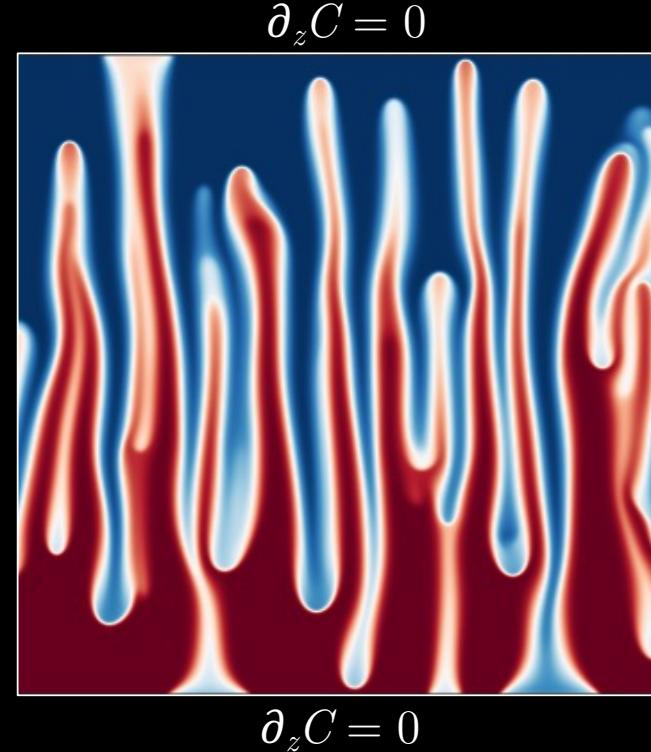
Case I  
Rayleigh-Bénard



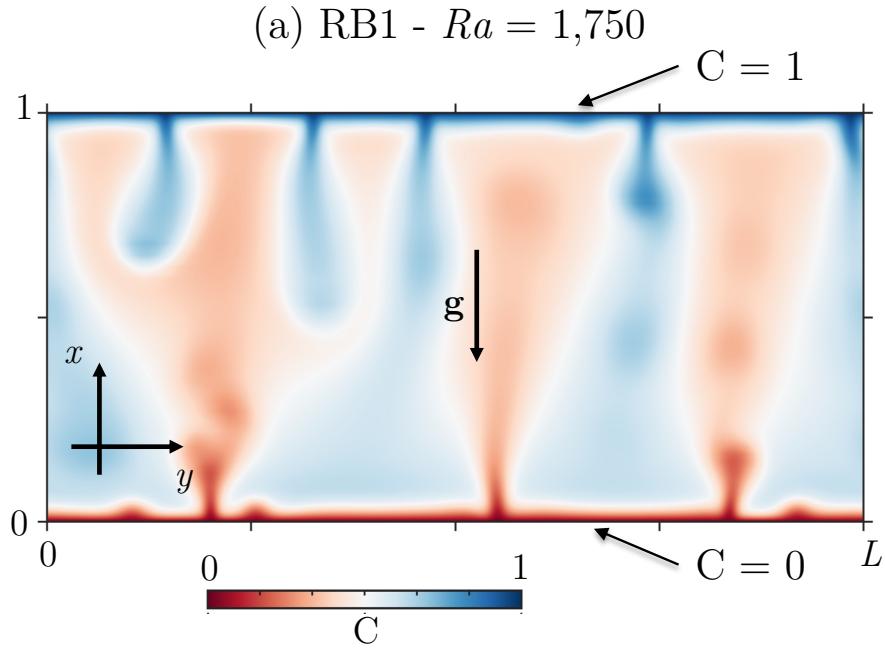
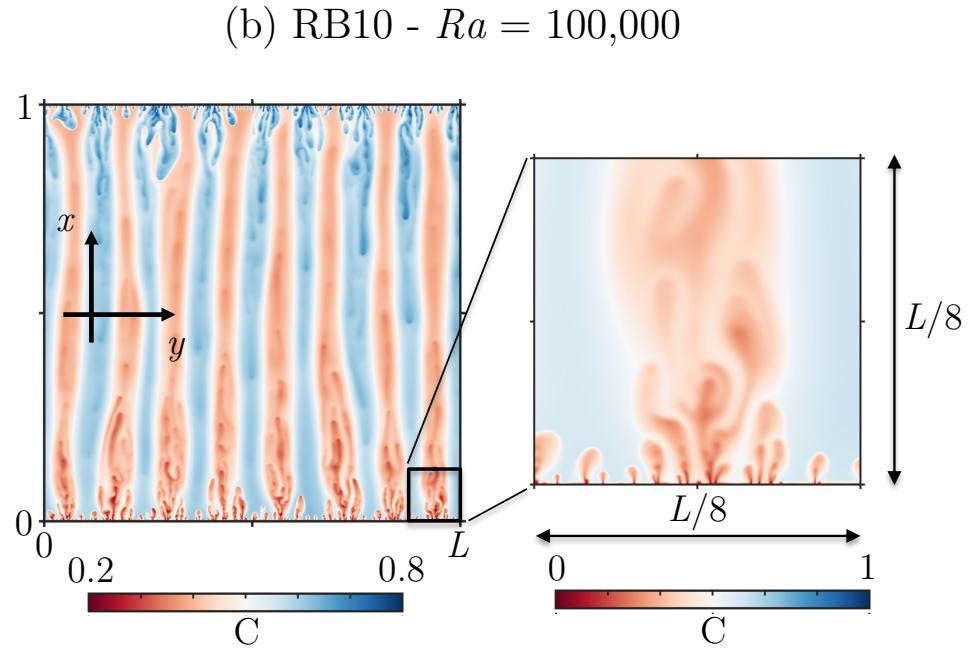
Case II  
One-sided



Case III  
Rayleigh-Taylor



We double  $Ra$  with respect to current state-of-art simulations

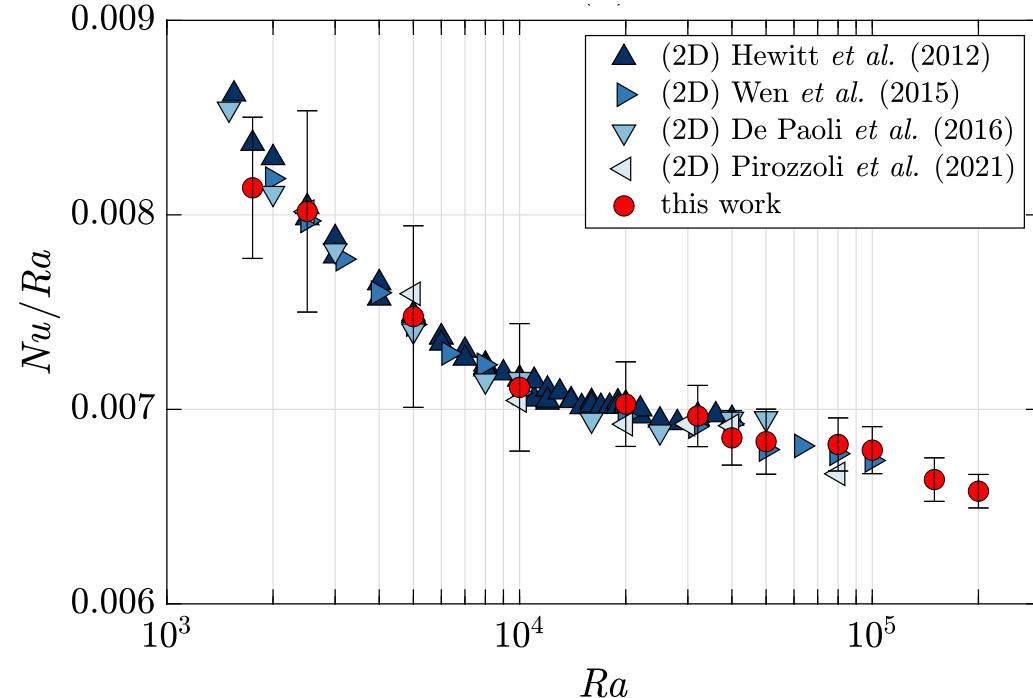


$$Nu \sim Ra \quad \Rightarrow \quad \begin{aligned} N_x \times N_y \times N_z &\sim Ra^3 \\ \Delta t &\sim Ra^{-1} \end{aligned}$$

Computational costs  $\sim Ra^3$  (2D) or  $Ra^4$  (3D)

| $Ra$               | $L$ | $N_x \times N_y \times N_z$  |
|--------------------|-----|------------------------------|
| $8.00 \times 10^4$ | 1.0 | $2048 \times 6144 \times 1$  |
| $1.00 \times 10^5$ | 1.0 | $2560 \times 7680 \times 1$  |
| $1.50 \times 10^5$ | 1.0 | $4096 \times 12288 \times 1$ |
| $2.00 \times 10^5$ | 1.0 | $5120 \times 15360 \times 1$ |

# Case I – Rayleigh-Bénard convection



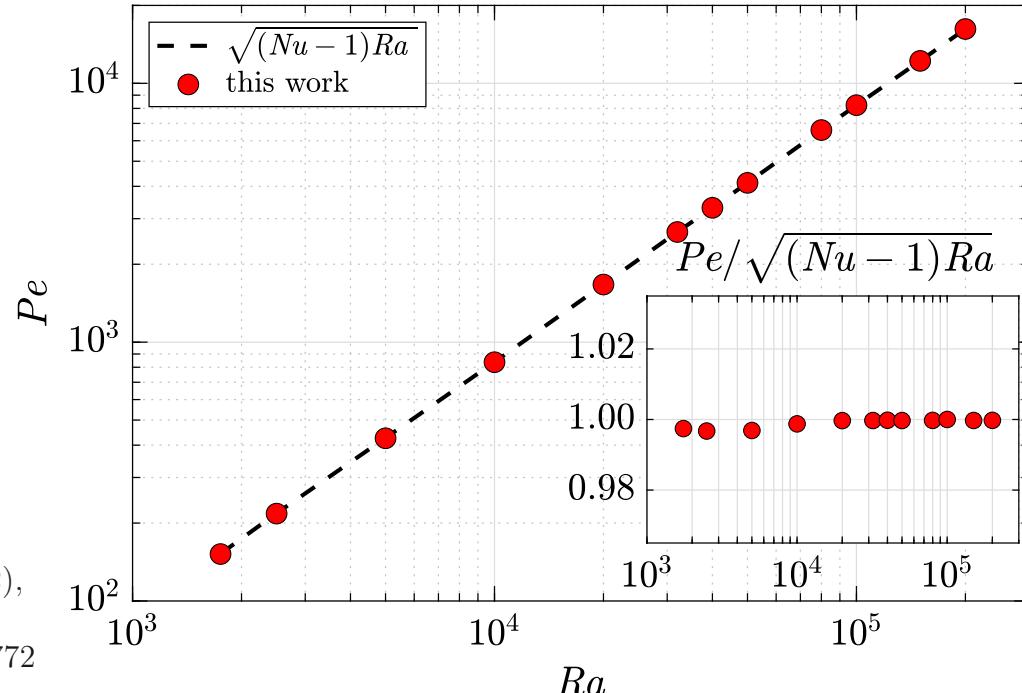
Hewitt, D. R., Neufeld, J. A., & Lister, J. R. (2012). *Physical Review Letters*, 108(22), 224503. <https://doi.org/10.1103/PhysRevLett.108.224503>

Wen, Baole, Lindsey T. Corson, and Gregory P. Chini, *Journal of Fluid Mechanics* 772 (2015): 197–224. <https://doi.org/10.1017/jfm.2015.205>

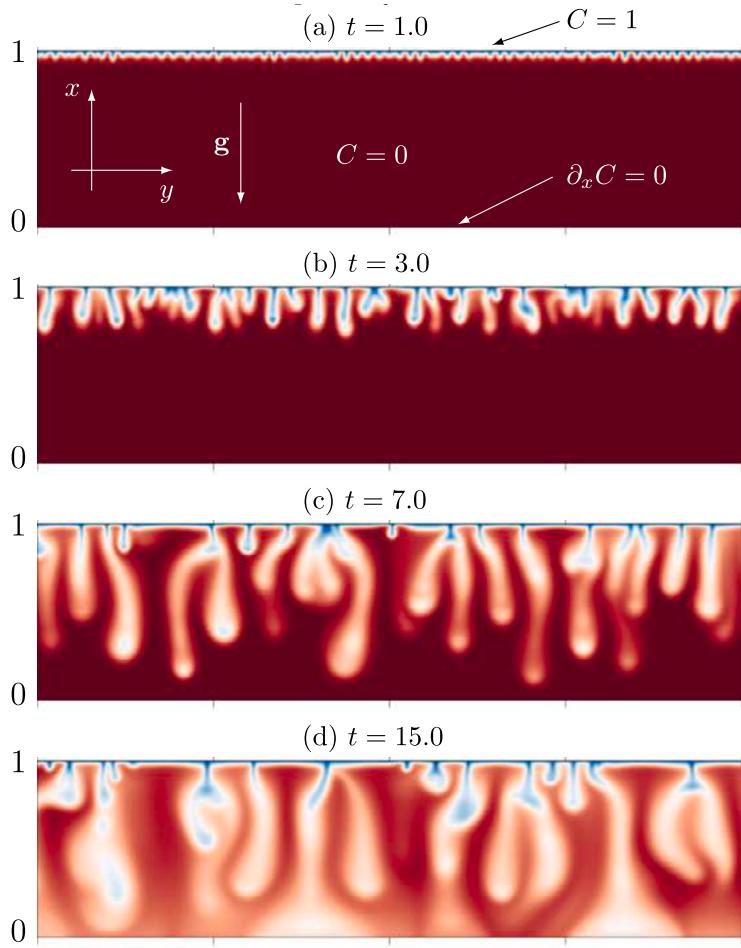
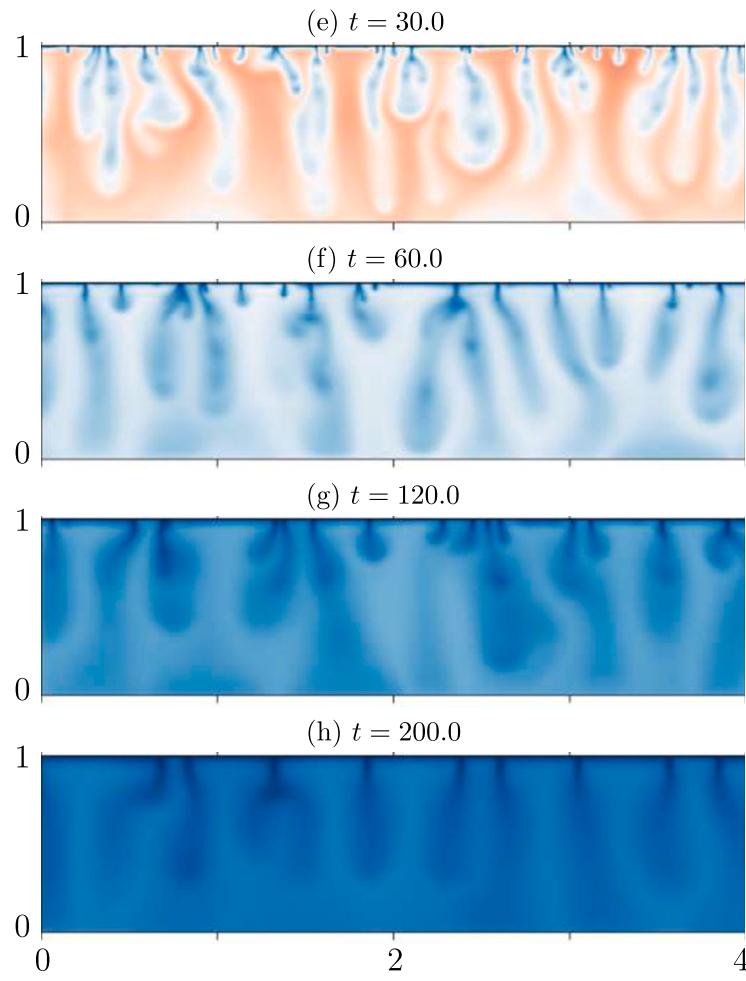
De Paoli, M. Zonta, F. and Soldati, A., *Physics of Fluids* 1 May 2016; 28 (5): 056601. <https://doi.org/10.1063/1.4947425>

Pirozzoli, Sergio, Marco De Paoli, Francesco Zonta, and Alfredo Soldati. *Journal of Fluid Mechanics* 911 (2021): R4. <https://doi.org/10.1017/jfm.2020.1178>

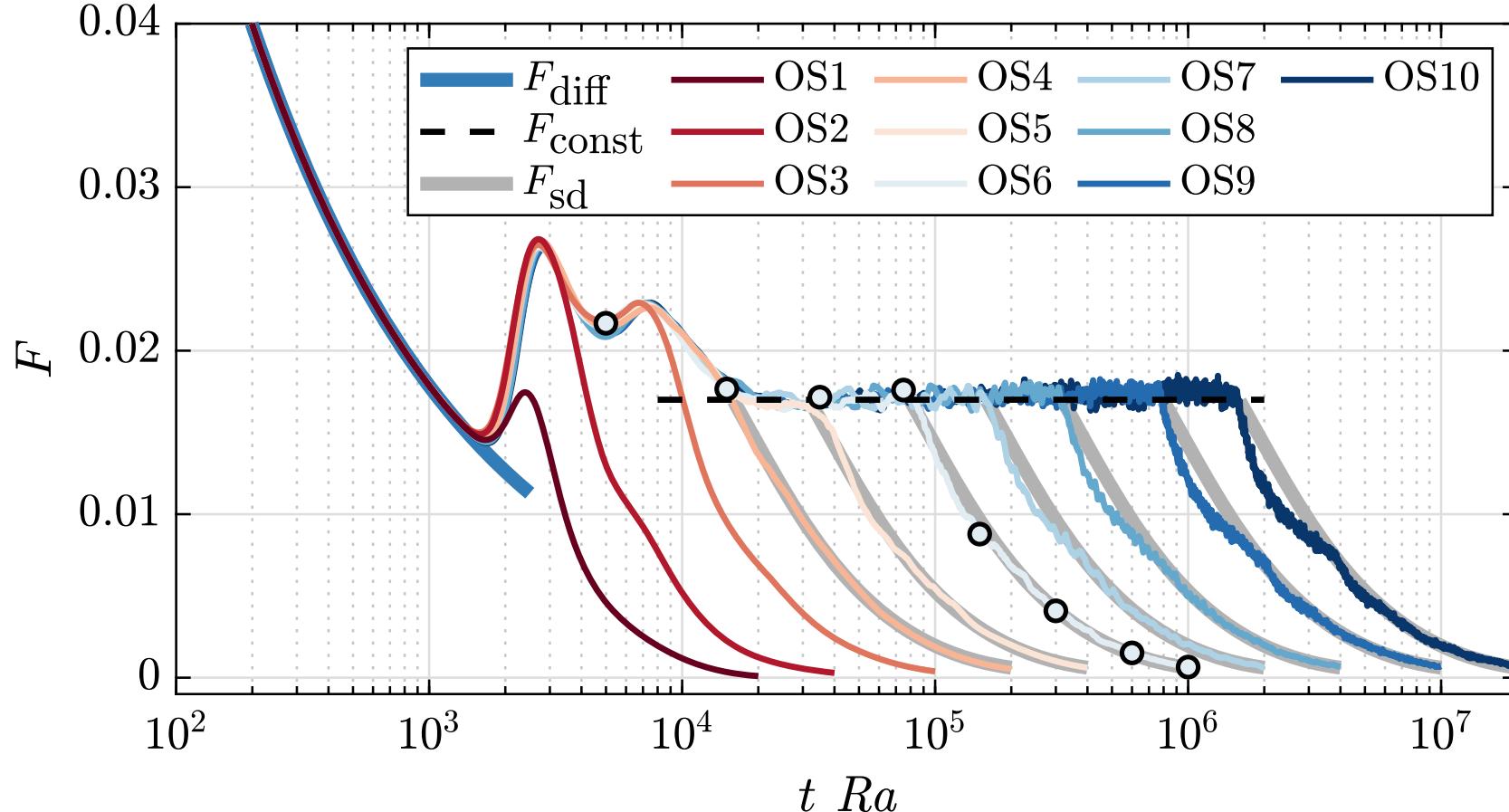
Zhu, Xiaojue, Yifeng Fu, and Marco De Paoli. “Transport Scaling in Porous Media Convection.” *Journal of Fluid Mechanics* 991 (2024): A4. <https://doi.org/10.1017/jfm.2024.528>.



# Case II – one-sided convection

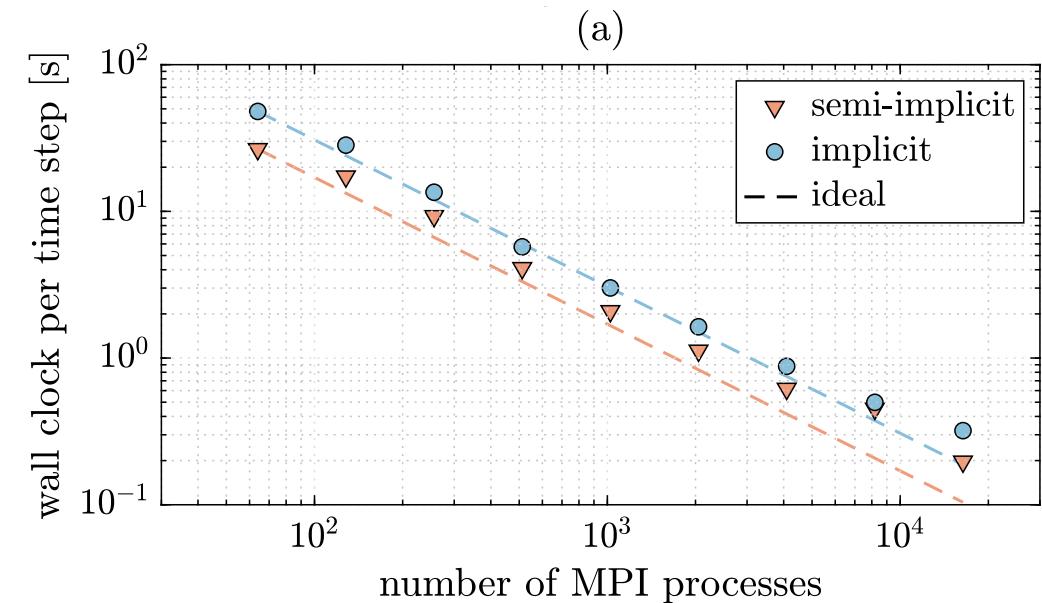


## Case II – one-sided convection



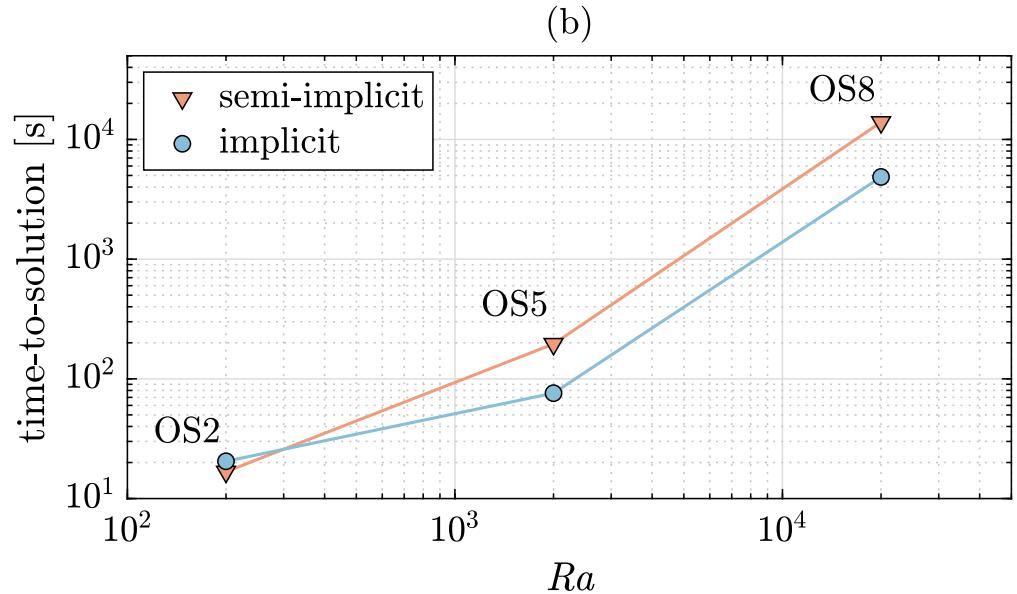
See also for the purpose of verification: Slim, Anja C. "Solutal-Convection Regimes in a Two-Dimensional Porous Medium." *Journal of Fluid Mechanics* 741 (2014): 461–91. <https://doi.org/10.1017/jfm.2013.673>.

**Implicit solver:** each time step is computationally more expensive

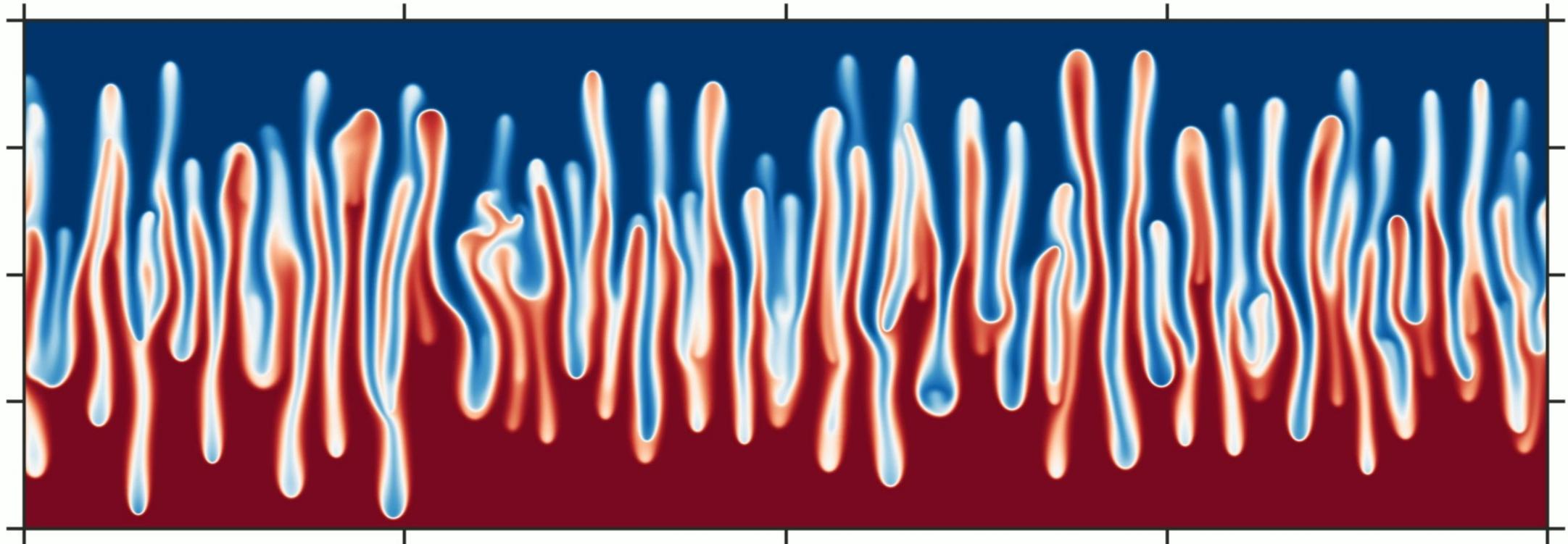


Larger wall-clock per time/step

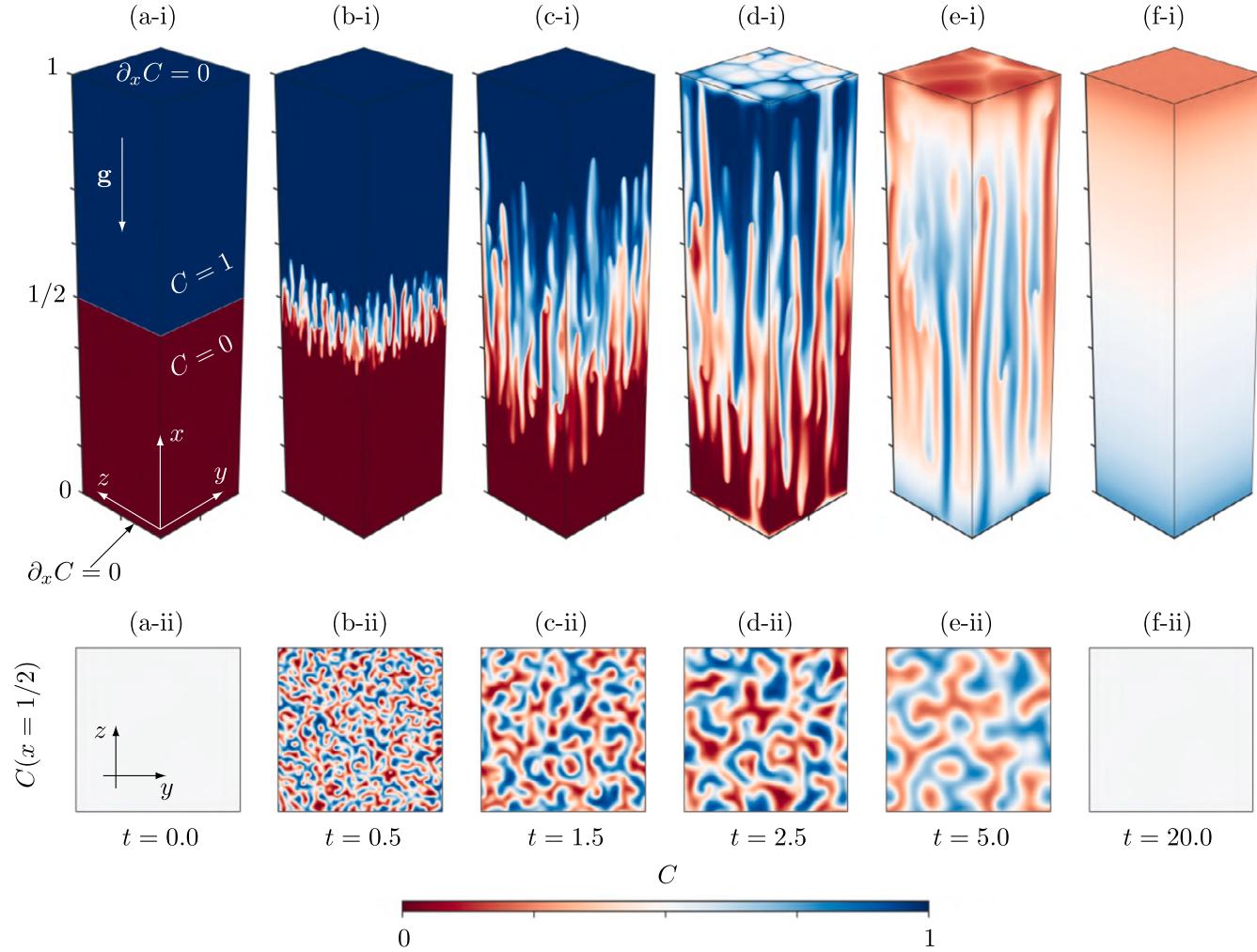
**Implicit solver** allows larger time steps



Smaller time to solution



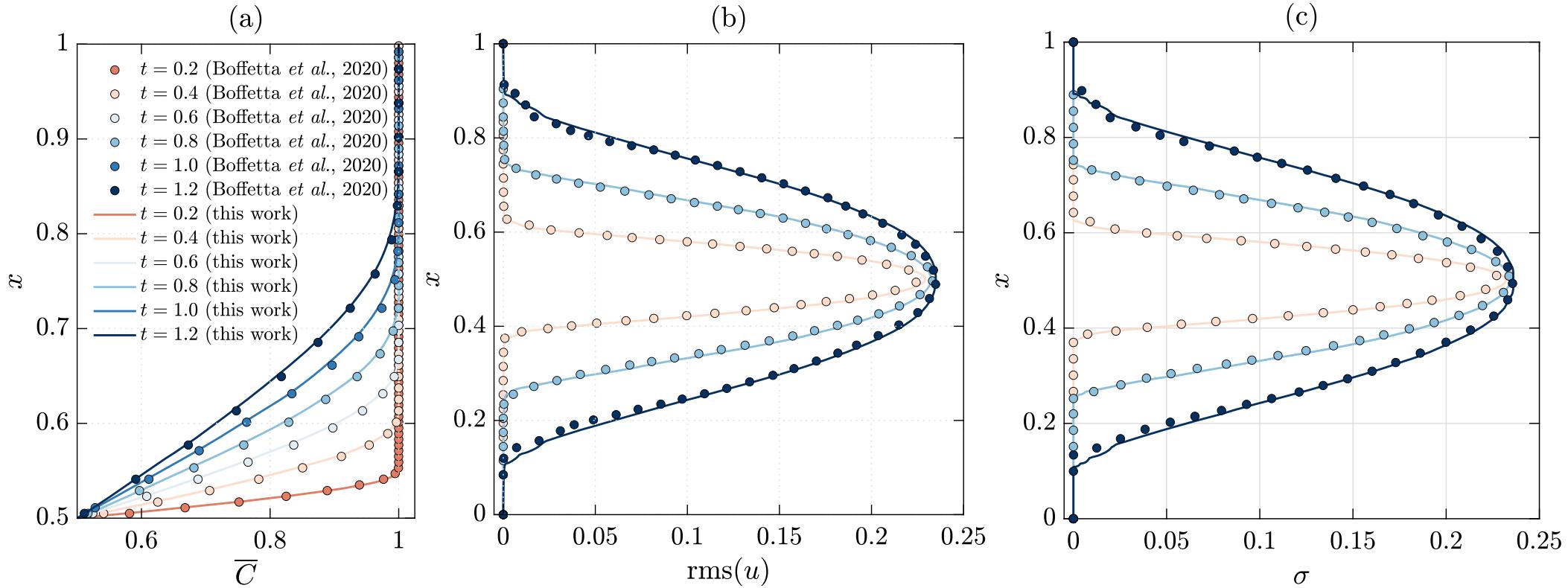
# Case III – Rayleigh-Taylor flow



| $Ra$               | $L$   | $N_x \times N_y \times N_z$     |
|--------------------|-------|---------------------------------|
| $3.20 \times 10^4$ | $1/4$ | $2048 \times 512 \times 512$    |
| $6.40 \times 10^4$ | $1/4$ | $4096 \times 1024 \times 1024$  |
| $1.28 \times 10^5$ | $1/4$ | $8192 \times 2048 \times 2048$  |
| $2.56 \times 10^5$ | $1/8$ | $16384 \times 2048 \times 2048$ |

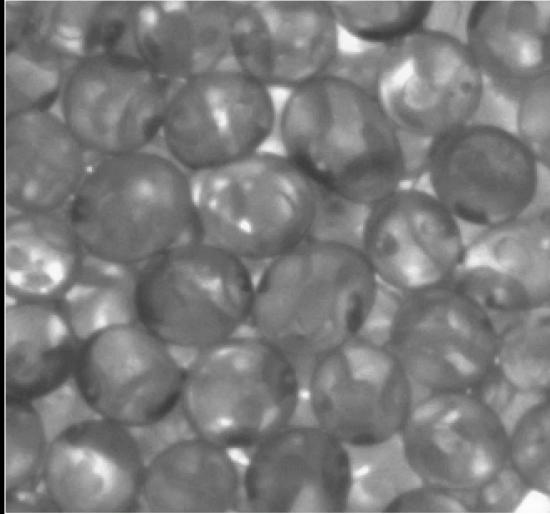
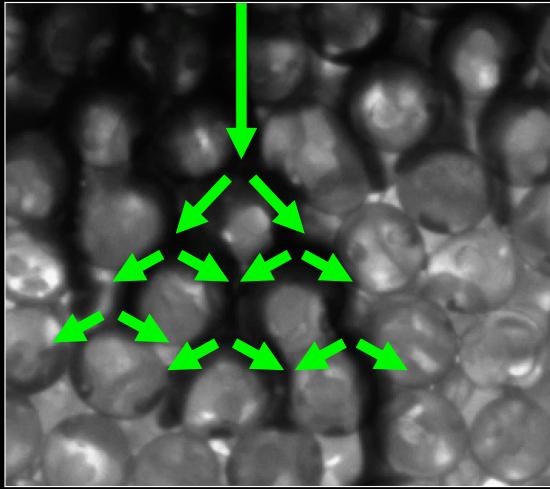
- Up to 70 Billion grid points
- Up to 64k MPI processes
- Essential to optimize communications

# Case III – Rayleigh-Taylor flow



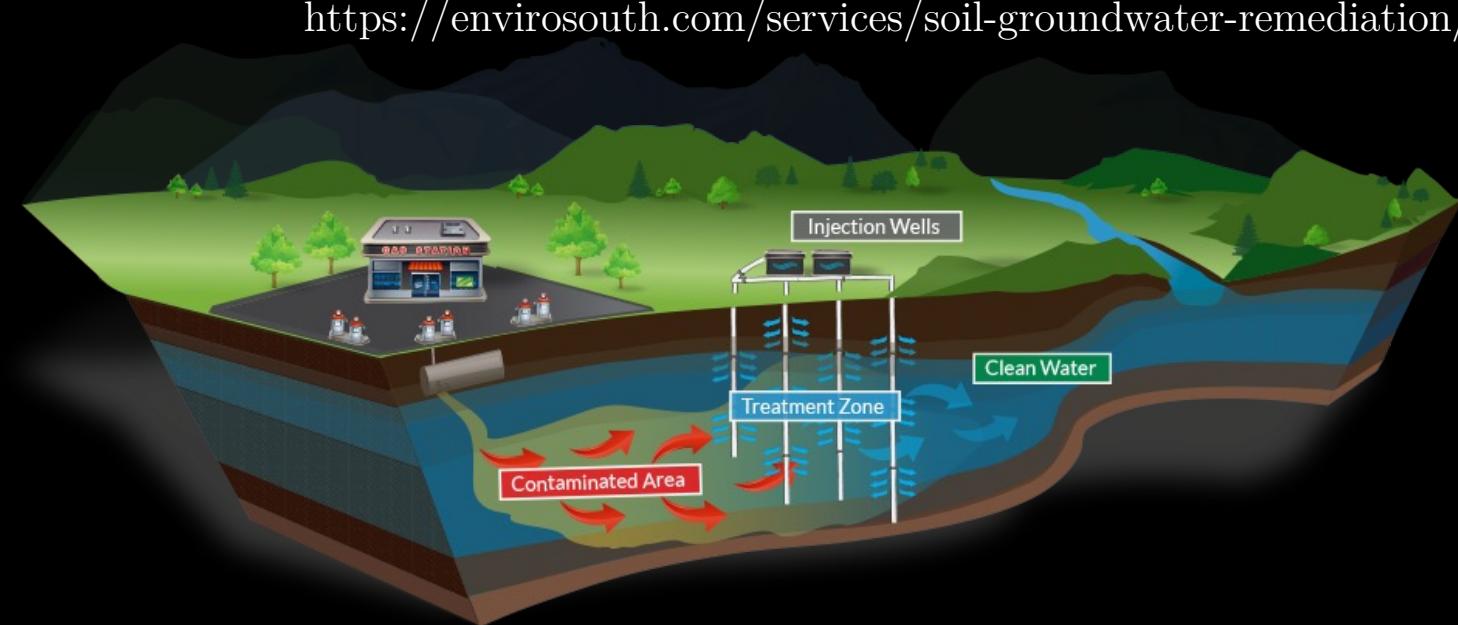
Verified against: Boffetta, G., Borgnino, M., & Musacchio, S. (2020). Scaling of Rayleigh-Taylor mixing in porous media. *Physical Review Fluids*, 5(6), 062501. <https://doi.org/10.1103/PhysRevFluids.5.062501>

# 4) Future developments



## 4) Future developments

<https://envirosouth.com/services/soil-groundwater-remediation/>



Include the effects of mechanical dispersion (anisotropic Fickian **dispersion** formulation)

$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = \nabla \cdot (\mathbf{D} \nabla C) \quad \mathbf{D} = \mathbf{I} + \frac{1}{\Delta} \left[ (r - 1) \frac{\mathbf{u} \mathbf{u}^T}{|\mathbf{u}|} + |\mathbf{u}| \mathbf{I} \right]$$

# 5) Conclusions

## 5) Conclusions

- We developed a code for numerical simulations of buoyancy-driven Darcy flows: **AFiD-Darcy**
- Massively parallelized and designed for extreme  $Ra$
- Versatile and suitable also at low  $Ra$  due to the implicit version
- Open source:
  - Computer Physics Communications Library:  
<https://doi.org/10.17632/xhx3gzpj6n.1>
  - GitHub  
<https://github.com/depaolimarco/AFiD-Darcy>



Documentation still in development, please contact me for any question:  
[m.depaoli@utwente.nl](mailto:m.depaoli@utwente.nl) ;  
[marco.de.paoli@tuwien.ac.at](mailto:marco.de.paoli@tuwien.ac.at)

