What is the flow topology of a convective porous media flow?

What is the minimum domain size we need to simulate to capture the large-scale flow structures?

We have addressed these questions in our recent work published on Journal of Fluid Mechanics. With the aid of massively parallelized numerical simulations, we show that the near-wall, large-scale temperature patterns (supercells) represent the footprint of the flow structure in the core of the domain (megaplumes). We have also analyzed the effect of the domain size (aspect ratio, AR), on the resulting flow topology.